Stratigraphy of the outcropping Permian rocks around the San Juan Basin

Charles B. Read, 1950, pp. 62-66

in:

This is one of many related papers that were included in the 1950 NMGS Fall Field Conference Guidebook.

Annual NMGS Fall Field Conference Guidebooks

Since 1950, the New Mexico Geological Society has held an annual Fall Field Conference that visits some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed papers. These books have set the national standard for geologic guidebooks and are an important reference for anyone working in or around New Mexico.

Free Downloads

The New Mexico Geological Society has decided to make our peer-reviewed Fall Field Conference guidebook papers available for free download. Non-members will have access to guidebook papers, but not from the last two years. Members will have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of the societies' operating budget. Therefore, only research papers will be made available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content will remain available only in the printed guidebooks. This will encourage researchers to purchase the printed guidebooks, which are essential references for geologic research in New Mexico and surrounding areas.

Copyright Information

Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. No material from our website or printed and electronic publications may be reprinted or redistributed without our permission. Contact us for permission to reprint portions of any of our publications.

One printed copy of any materials from our website or our print and electronic publications may be made for individual use without our permission. Teachers and students may make unlimited copies for educational use. Any other use of these materials requires permission.
STRATIGRAPHY OF THE OUTCROPPING PERMIAN ROCKS AROUND THE SAN JUAN BASIN

By Charles B. Read
Published by permission of the Director, U. S. Geological Survey

Introduction

This resume of Permian stratigraphy as it is shown in the belts of outcropping strata on the margins of the San Juan Basin is based on field observations by the writer and his colleagues. All areas discussed have been examined and the stratigraphy in the Lucero and Nacimiento areas has been reported in detail by the U. S. Geological Survey. This summary is restricted to the outcrop areas because deep wells in the San Juan Basin that penetrate the Permian rocks are few and fail to add substantially to our information on the distribution and relationships of the strata.

Stratigraphy

The rocks that crop out in the Zuni and Lucero Uplifts have been differentiated into three formations, which, in ascending order, are the Abo formation of Permian (?) age, and the Yeso and San Andres formations of Permian age. The Abo formation is a sequence of brown arkosic or quartzose sandstone and siltstone that exhibits irregular bedding. In the Lucero Uplift, which lies southeast of the San Juan Basin, the formation rests with apparent conformity on the Red Tanks member of the Madera limestone of late Pennsylvanian age. In the Zuni Uplift the Abo locally rests on a few feet of impure limestone and coarse clastics of problematical age, which in turn lie on pre-Cambrian rocks. Elsewhere in the uplift the Abo formation is in direct contact with the pre-Cambrian. In the Sierra Nacimiento the Abo formation rests on Upper Pennsylvanian strata over large areas (Wood and Northrop 1946). Locally, however, it lies directly on the pre-Cambrian rocks.

The Yeso formation overlies the Abo formation with a sharp but apparently even basal contact in both the Lucero Uplift (Kelley and Wood 1946) and the southern part of the Zuni Uplift. Two members have been recognized: a lower massive or thick-bedded and cross-bedded quartzose sandstone and an overlying sequence of fine-grained sandstone, siltstone, gypsum, and dense limestone beds. In the Sierra Nacimiento south of the latitude of Cuba the Yeso formation consists of a basal massive ledge of cross-bedded quartzose sandstone that is overlain by even-bedded fine-grained sandstone and siltstone. Two or three thin beds of dense lime-
Traced southward the Cutler formation changes by lateral gradations into the DeChelly sandstone and so-called Supai formation in Arizona and into the Abo, Yeso, and San Andres formations in New Mexico. Similar lateral gradations have been observed westward from the San Juan Mountains and into Utah.

Paleogeography

At the beginning of Wolfcamp time a series of generally north- or northwest-trending active positive elements which are sometimes referred to as the Ancestral Rocky Mountains lay in parts of northern and central New Mexico (See Fig. 3). The westernmost of these positive elements was adjacent to the present San Juan Basin and flanked it on the northeastern and eastern margins. At least two masses have been recognized—a very large feature or group of features that is called the Uncompahgre axis and a smaller one that is called the Penasco axis. These positive elements were the principal sources of clastic materials that accumulated in the San Juan Basin as well as in the intermontane basins.
Along the New Mexico-Arizona line there were two stable geanticlines—the Zuni and Defiance arches. Although these locally contributed clastics to the adjacent basins they appear to have been generally inactive and therefore minor sources of materials.

These two types of positive elements—the active Ancestral Rocky Mountains on the east and north and the stable but inactive elements on the west—flanked the ancestral San Juan Basin on three sides. To the south lay the early Permian sea. Into the old San Juan Basin arkose, gray-wacke, and quartzose sandstone derived from the Ancestral Rocky Mountains were deposited under dominantly floodplain and delta conditions. This continental phase of basin filling was the final episode in a cycle of geosynclinal sedimentation that commenced in Pennsylvanian time and terminated in early to middle Permian time. This termination was a result of geanticlinal maturity and subsequent burial of the positive elements by clastics derived from areas still farther to the north.

After the time of geanticlinal maturity and old-age broad downwarping movements occurred. These permitted the northward transgression of seas that had prior to that time been restricted to areas south of the San Juan Basin.
The marine deposits that resulted from this transgression and associated lesser fluctuations are the Yeso and San Andres formations. It may be deduced from the distribution of these deposits that the northernmost limit of the strand line of this sea lay at about 36° north latitude along the east margin of the present San Juan Basin and trended north-westward toward the point of junction of New Mexico, Arizona, Colorado, and Utah. Northeast of this line the marine Yeso and San Andres formations grade rapidly into the subaerial and subaqueous floodplain and delta deposits of the Cutler type. The great tangentially cross-beded sandstone of the Meseta Blanca, Glorieta, Coconino, and De-Chelly types are interpreted as migrating beach and bar deposits, some of which are transgressive and others regressive. It is probable that the positions and migrations of such bars and beaches were controlling factors in the distribution of evaporites in the southern part of the San Juan Basin during parts of Yeso and San Andres time.

To the writer’s knowledge there is no record of Permian sedimentation in the area after the deposition of the San Andres formation. In fact, the full record of San Andres deposition is not preserved, owing to the presence of a profound pre-Upper Triassic hiatus and resultant disconformity. The depth of erosion of this irregular plane is problematical, but it is markedly irregular and locally has a relief of at least 100 feet.

Nomenclature of Permian Formations

<table>
<thead>
<tr>
<th>Provincial Series, West Texas (for comparison)</th>
<th>Lucero Uplift, N. M.</th>
<th>Zuni Uplift, N. M.</th>
<th>Sierra Nacimiento, N. M.</th>
<th>Defiance Uplift, Ariz.</th>
<th>San Juan Mts., Colo.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ochoa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Guadalupe</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leonard</td>
<td>Yeso formation</td>
<td>Yeso formation</td>
<td>Yeso formation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Los Vallos member</td>
<td>Los Vallos member</td>
<td>San Ysidro member</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meseta Blanca sand-</td>
<td>Meseta Blanca sand</td>
<td>Meseta Blanca sand</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>stone member</td>
<td>stone member</td>
<td>stone member</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wolfcamp</td>
<td>Abo formation</td>
<td>Abo formation</td>
<td>Abo formation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pennsylvanian</td>
<td>Pennsylvania locally</td>
<td>Pennsylvania locally</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pre-Cambrian else-</td>
<td>Pre-Cambrian</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>where</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

65
FIGURE 3. MAP OF NORTHWESTERN NEW MEXICO SHOWING POSITIONS OF LOWER PERMIAN POSITIVE AXES

Selected References

66