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MARK D. SONNENFELD
Department of Geology and Geological Engineering, Colorado School of Mines, Golden, Colorado 80401

Abstract—San Andres Formation outcrops in Last Chance Canyon are interpreted to contain two large-scale depositional
sequences, upper San Andres sequence 3 and upper San Andres sequence 4. Facies associations, volumetric proportions of
carbonate and siliciclastic strata and depositional topography change progressively through the course of the upper San
Andres sequence 4. These aspects change in a predictable fashion and correspond to position within the lowstand,
transgressive and highstand systems tracts. Units within the lowstand to transgressive systems tracts record a progressive
decrease in sedimentation rate, depositional energy and siliciclastic content. This reflects a long-term transition from
detrital, siliciclastic-dominated, point-sourced slope sedimentation to increasingly autochthonous, carbonate-dominated,
line-sourced slope sedimentation. Within carbonate strata of the transgressive systems tract, long-term relative sea level rise
is interpreted from thick outer-shelf deposits, highly aggradational to mounded fusulinid shoals and net stratigraphic rise
of the fusulinid facies tract. The most carbonate-rich and bioherm-bearing interval of the entire sequence overlies a
distinctive maximum flooding surface capping the transgressive systems tract. Ensuing high-frequency sequences of the
middle to late highstand systems tract show pronounced progradational offlap and record a progressive increase in the
volume of siliciclasts accumulated on the outer shelf. A karsted toplap surface represents a subaerial unconformity and
sequence boundary capping upper San Andres sequence 4. Embedded within upper San Andres sequence 4 are numerous
high-frequency sequences that show the following similarities to larger, seismic-scale depositional sequences: (I) stratal
geometries; (2) the nature of bounding surfaces; (3) the timing of bioherm development; (4) siliciclastic to carbonate
facies evolution; and possibly (5) point-source to line-source evolution. One of the most important aspects of
stratigraphic self-similarity, best documented within the highstand systems tract of upper San Andres 4, involves the
seaward transition from asymmetric shallowingupward hemicycles at the toe-of-slope and seaward. Each symmetric cycle
includes an inferred deepening-upward phase or “transgressive hemicycle,” characterized by a waning siliciclastic
influence, succeeded by a shallowing-upward phase, or “regressive hemicycle," characterized by flourishing, prograding
carbonates. The concept of qualified stratigraphic self-similarity does not diminish the importance of facies variation or "dif-
ferentiation" within and among sequences; it merely emphasizes that the physical stratigraphy of a sequence reflects
spatial and temporal variations in accommodation/sediment supply ratios but is relatively independent of absolute
duration.
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ANATOMY OF OFFLAP: UPPER SAN ANDRES FORMATION (PERMIAN, GUADALUPIAN),
LAST CHANCE CANYON, GUADALUPE MOUNTAINS, NEW MEXICO

INTRODUCTION AND GEOLOGIC SETTING

Last Chance Canyon lies 20 km northwest of the upper Guadalupian
Capitan escarpment that separates the Permian Delaware Basin province
from the Northwestern Shelf province (Figs. 1, 2). The Huapache fault
zone obliquely crosses the eastern edge of the Last Chance Canyon
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area and is expressed on the surface as the Huapache Monocline of
probable Tertiary age (McKnight, 1986). This fault zone was also active
in Pennsylvanian to carliest Permian (Wolfcampian) times and defines
the northeastern margin of an ancestral Huapache Uplift (Fig. 3; Meyer,
1966).

The northwestern margin of the Permian Delaware Basin was an arid
rcgion +=5° of the paleoequator (Scotese et al., 1979; Fischer and
Sarnthein, 1988). The arid climate limited fluvial runoff while pro-
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FIGURE |. Regional paleogeographic setting during the late Guadalupian (Per-
mian). Modified from King (1948).

FIGURE 2. Location of Guadalupe Mountains region and Last Chance Canyon
study area. Modified from King (1948) and Babcock (1977).
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FIGURE 3. Terminal shelf-margin trends for several Leonardian and Guadalu-
pian units. Note the pronounced bend of the lower Leonardian Abo Reef trend
in response to the remnant paleohigh formed by Pennsylvanian through Wolf-
campian activity along the Huapache fault zone. The lower-middle San Andres
margin’s trend records a subdued yet evident expression of the Huapache sub-
basin and was derived from author’s observations, Rossen and Sarg (1988) and
Fitchen et al. (1992).

moting the development of inferred aeolian dunefields during episodic
subaerial exposure of carbonate-dominated shelves (Fischer and Sarn-
thein, 1988). The low paleolatitude, the arid climate and the lack of
turbid, terrestrial runoff promoted the growth of basin-rimming car-
bonate banks and reefs. Negligible volumes of hemipelagic clay, cou-
pled with the absence of calcareous and siliceous planktonic organisms
prior to the Jurassic, led to the development of a sediment-starved basin
during relative highstands of sea-level. By contrast, siliciclastics by-
passed the shelves in a "reciprocal™ fashion during relative lowstands
of sea-level, resulting in the accumulation of predominantly siliciclastic
basinal deposits of the Delaware Mountain Group (Meissner, 1967,
1972).

Early stratigraphic studies in Last Chance Canyon focused on the
nature and distribution of rock types and fossils within the context of
correlating formations and their boundaries (Fig. 4; Darton and Reeside,
1926; King, 1942, 1948; Skinner, 1946; Boyd, 1958; Hayes, 1959).
More recent studies of Last Chance Canyon emphasized the interpre-
tation of shelf through slope environments of deposition (Harrison,
1966; Jacka et al., 1968; Williams, 1969; Naiman, 1982; McDermott,
1983). The regional studies of Meissner (1967, 1972) and Silver and
Todd (1969) refined shelf-to-basin temporal correlations and pioneered
the application of sequence stratigraphy in the Delaware Basin by ap-
plying the concept of "reciprocal sedimentation" (Van Siclen, 1958;
Wilson, 1967). These workers recognized the cyclic alternation of ba-
sin-centered siliciclastics with carbonate-dominated shelf and slope de-
posits, and presumed that eustasy was responsible for basinwide late
Wolfcampian through Guadalupian depositional cycles. Meissner (1967,
1972) and Silver and Todd (1969) interpreted the lower San Andres
Formation as the product of a long-term, punctuated transgression com-
mencing in the late Leonardian to Guadalupian Epochs. Relatively deep-
water lower Guadalupian strata were deposited upon flooded Leonardian
platforms, resulting in paleo-water depths at the toe-of-depositional-
slope of 40-100+ m, rather than the 200-500+ m water depths inferred
for Delaware Mountain Group sandstones in the center of the Delaware
Basin proper (Fig. 5). This transgression was followed by long-term,
punctuated regression during deposition of the middle to upper San
Andres Formation. Multiple episodes of siliciclastic bypass across the
upper San Andres shelf resulted in deposition of Brushy Canyon and
lower Cherry Canyon sandstones in the Delaware Basin (Meissner,
1972).
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FIGURE 4. Generalized early to middle Permian stratigraphic columns. After
Hills and Kottlowski (COSUNA), 1983

More recently, Sarg and Lehmann (1986a, b) described depositional
facies, large-scale stratal geometries and sequence boundaries within
the framework of seismic-scale sequence stratigraphy (Vail et al., 1977).
They proposed a temporal correspondence between two seismically
resolvable San Andres sequences in the subsurface (location of Exxon
Production Research seismic section shown on Figs. 2, 3) and two
sequences recognized within the San Andres of Last Chance Canyon.

In Last Chance Canyon, Sarg and Lehmann (1986a) interpreted two
genetically distinct stratigraphic units within the complex transitional
strata between shelf and slope carbonates of the San Andres Formation
and slope and basinal siliciclastics of the Cherry Canyon Formation.
The lower unit is an onlapping, predominantly siliciclastic unit termed
the "lower Cherry Canyon sandstone tongue." The upper unit consists
of offlapping, mixed siliciclastic/carbonate strata of the uppermost San
Andres Formation and "upper Cherry Canyon sandstone tongue." These
strata downlap the upper surface of the lower Cherry Canyon sandstone
tongue (Fig. 5).

Studies of the San Andres Formation by Fitchen (1992), Kerans et
al. (1 992a, b), Sonnenfeld (1991a, b) and Sonnenfeld and Cross (in
press) emphasized facies arrangements within and among numerous
high-frequency sequences embedded within the San Andres formation.
Recent outcrop studies have subdivided the San Andres Formation into
at least eight sequences of similar spatial scales (Fig. 5; Fitchen et al.,
1992; Kerans et al., 1992a, b; Kerans et al., 1993). Additionally, most
if not all sequences within the Brushy Canyon Formation lack shelfal
equivalents (M. H. Gardner, personal comm. 1992; Kerans et al., 1993,
this volume); thus up to sixteen large-scale sequences may be embedded
within the two seismic-scale, third-order sequences of Sarg and Leh-
mann (1986a; Fig. 5). Estimates of the duration of the entire San Andres
Formation range from 5 to 10 Ma, depending on the absolute time scale
used (Fig. 6). Assuming equal durations, each of the eight to sixteen
San Andres sequences could range from 310 ky to 1250 ky, below the
1-5 Ma duration of Leonardian and Guadalupian biostratigraphic zones
(Ross and Ross, 1987; Harland et al., 1989; Wilde, 1990). Because
estimates of temporal duration remain so imprecise, a site-specific ter-
minology is used instead. Probable fourth-order cycles (0.1-1.0 Ma)
are informally termed "large-scale" (rock) and "long-term" (time) and
probable fifth-order cycles (<0.1 Ma) embedded within the two large-
scale San Andres sequences exposed in Last Chance Canyon are termed
"high-frequency sequences" or simply "cycles."



LAST CHANCE CANYON SAN ANDRES 197

Goat Seep

lower San Andres

Y=o Victorio Peak sea Gl
T,
—scales very approximate— w~— = Sequence boundary Brushy
E ook R R e e = maximum flooding surface —~___ Canyon
Sk iy o uSA,, = upper San Andres sequences 1-5
: ! I P l-mSA,, = lower-middle San Andres sequences 1-4

FIGURE 5. Schematic stratigraphic setting of Leonardian and Guadalupian strata along the northwestern shelf of the Delaware Basin, Modified in part from Sarg
and Lehmann (1986a), Pray (1988) and Kerans and Nance (1991). Box represents ared of Last Chance Canyon cross section A-A" (Fig. 8). San Andres “I"" and
“I1"" correspond approximately to the seismic-scale third-order sequences defined by Sarg and Lehmann (1986a). Upper San Andres sequences 3 and 4 correspond
to Guadalupian sequences 12 and 13 of Kerans et al. (1993, this volume).

a) b) Algerita Escarpment Last Chance Canyon Delaware Basin
wa | Ma Ma proper
L2503+ 2501 2500 AR PLASRTL LSS
c et b - subaerial hiatus// //
© s z o
g Capitanian (USA]
o]
ol s 252.5# -4
© ] 77 7 LAl T
g | Word}an hasincentemdﬂmshy%nyonﬁandslomﬁg
5]
Lo58.04+255 — 255.0 o
Ufimian u T
Lt | (Roadian) 2 =
c ey i
IS — = Irenian
=
g - 263.2- = e :
c S Filippovian '
o N—> :
QO |osss- ..E_—-zsg.? : Yeso Victorio Peak Bone Spring
1 [0,

<——DISTANCE—>

shelf to upper-slope I mixed siliciclastic &
carbonates il carbonate slope V hiatus
middle- to toe-of-slope [z slope & basinal
carbonates seiidl  siliciclastics

FIGURE 6. Absolute time scales, geochronologic units and Wheeler (chronostratigraphic) diagram for the nine San Andres sequences recognized in the western
Delaware basin and Guadalupe Mountains region. Time scale “a” of Ross and Ross (1987) and Wilde (1950) differs from time scale “*b"" of Harland et al. (1989),
particularly with respect to the duration ascribed to the Roadian and Wordian stages. These discrepuncies impart a potential range in duration of 5 to 10 Ma for the
San Andres Formation. Note that Kerans et al. (1993, this volume) document that the lower-middle San Andres is late Leonardian in age. Box denotes Last Chance
Canyon outcrops.




198

SONNENFELD

R22E

" Baker Pen .
: Draw  :°

Hum bi:e
1 -Huapachg Bro s

12 3
26" o“
: : Ga“‘l

1-W. Huapache,

Inexco
i 1-Sitting Bull

} 0.5 mi |
& | 0.8 km

FIGURE 7. Geographic map of Last Chance Canyon area showing locations of measured sections and projection lines used to construct depositional-dip cross

section A-A' (Fig. 8).

A WEST

Strat. Secton #:17

o L IT I

=1

San Andres Formation
uSAs

uSAp %

i
i

LEGEND | VE =88
large-scale  ====+ maximum llooding surface | r
{30 and Sth-ordan sequence boundary
[}
high-frequency ding surface B0t 1w
Gfhi-ordar) se {cycie} boundary 1
wnm
very high-lrequency -------- fiooding surface 100 200  30am
{Bts-ordar? —— cycle boundary .
| S S0 000 R
—— stratal surfaces




LAST CHANCE CANYON SAN ANDRES

SUMMARY OF STRATIGRAPHIC RELATIONS

Last Chance Canyon is noted for its spectacular exposures of offlap-
ping strata. Observation of stratal geometries exposed in Last Chance
Canyon enhances one's appreciation and "eye" for stratal geometries
most commonly observed on seismic lines. Clinoform morphologies
varying from sigmoidal to complex sigmoid-oblique to oblique have
been used on both outcrop and seismic profiles to infer long-term ac-
commodation trends (e.g., Barrell, 1912; Cotton, 1918; Sarg, 1988;
Bosellini, 1989), yet premises concerning the significance, genesis and
likely facies associated with different clinoform geometries have re-
mained quite general (Brown and Fisher, 1977; Mitchum et al., 1977,
Sangree and Widmier, 1977; Bosellini, 1984; Sarg, 1988). Last Chance
Canyon's outcrops permit physical examination of strata and bounding
surfaces continuously from the outer shelf to the basin margin. This
allows relationships between seismic-scale clinoform geometries and
coeval depositional facies to be directly observed, thereby enhancing
description and understanding of the relations among facies, strati-
graphic geometries and time-significant stratigraphic bounding surfaces.

Twenty-six stratigraphic sections were measured for this study, eight
of which are located on the north wall of Last Chance Canyon (Figs.
7, 8, 9). These sections facilitate detailed correlations between and
within high-frequency sequences. Measured sections are projected onto
depositional dip oriented cross section A-A' (Fig. 8). San Andres For-
mation outcrops in Last Chance Canyon are interpreted to contain two
large-scale, fourth-order depositional sequences, upper San Andres se-
quence 3 and upper San Andres sequence 4 (Figs. 5, 6). Facies asso-
ciations, volumetric proportions of carbonate and siliciclastic strata and
depositional topography change progressively through the course of the
199
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upper San Andres sequence 4 (Sonnenfeld, 1991a, b; Sonnenfeld and
Cross, in press). These aspects change in a predictable fashion and
correspond to position within the lowstand, transgressive and highstand
systems tracts. Units within the lowstand and transgressive systems
tracts (USAy, cycles 1-4) record a progressive decrease in sedimentation
rate, depositional energy and siliciclastic content. This reflects a long-
term transition from detrital, siliciclastic-dominated, point-sourced slope
sedimentation to increasingly autochthonous, carbonate-dominated, line-
sourced slope sedimentation. Within carbonate strata of the transgres-
sive systems tract (USA, cycles 3-4), long-term relative sea level rise
is interpreted from thick outer-shelf deposits, highly aggradational to
mounded fusulinid shoals and net stratigraphic rise of the fusulinid
facies tract. The most carbonate-rich and bioherm-bearing interval of
the entire sequence overlies a distinctive maximum flooding surface
capping the transgressive systems tract (measured section 10, Fig. 8).
Ensuing high-frequency sequences of the middle to late highstand sys-
tems tract (USA,, cycles 6-12) show pronounced progradational offlap
and record a progressive increase in the volume of siliciclastics accu-
mulated in the basin with a concomitant decrease in the volume of
siliciclastics accumulated on the outer shelf. A karsted toplap surface
represents a subaerial unconformity and sequence boundary capping
upper San Andres sequence 4. Peritidal cycles within the overlying
Grayburg Formation exhibit a significant seaward shift in coastal onlap
across this sequence boundary (Sarg and Lehmann, |1 986a, b).
Published sequence stratigraphic models for carbonates have been
based on the simplifying assumption that carbonate and siliciclastic
responses to accommodation changes are analogous (Sarg, 1988; Vail,
1988). Within the transgressive systems tract of the upper San Andres

FIGURE 8. Stratigraphic cross section A-A’ through Last Chance Canyon. Vertical exaggeration is 8.8:1. Line of projection shown on Fig. 7. High-frequency
cycles 1-2 internal to uSA, are interpreted as the landward limit of the lowstand systems tract; uSA, cycles 3—4 are interpreted as the transgressive systems tract;
and uSA; cycles 6, 7-10 and 1112 are interpreted as the early, middle and late highstand systems tracts, respectively.
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FIGURE 9. Topographic map showing stops described in detailed field guide to Last Chance Canyon (Sonnenfeld, 1991b). Today’s field trip is limited to overview

Stop | (= “Panorama Point™) and outcrop Stops 2 and 6.

4, carbonate strata of successive cycles show net offlap concurrent with
landward-stepping siliciclastic domains. These contrasting strata] pat-
terns reflect the contrasting nature of carbonate versus siliciclastic sed-
iment supply. Carbonate production occurs across a wide range of
subtidal environments, whereas siliciclastic sediment supply to the
slope is directly tied to shoreline position.

Embedded within upper San Andres sequence 4 are numerous higher-
frequency sequences. Reciprocal siliciclastic/carbonate sedimentation
patterns enhance the recognition of cyclicity within both large-scale
sequences and within the many higher-frequency sequences. The in-
ternal components of several high-frequency cycles embedded within
upper San Andres sequence 4 are especially apparent from field trip
stops 1 ("Panorama Point") and 5 (Figs. 9, 10, 11). Erosional surfaces
and isolated turbidite- and/or storm-deposit filled channels form the
basal portion of slope to toe-of-slope siliciclastic transgressive hemi-
cycles. Channelized deposits are succeeded gradationally by bioturbated
and basin-restricted sandstone wedges representing waning rates of
siliciclastic sedimentation, predominantly from suspension. These high-
frequency strata/ relationships are similar to those generally ascribed
to lowstand through transgressive systems tracts within larger-scale
sequences. Sandy slope wedges are capped by transgressive surfaces
sporadically colonized by sponge-brachiopod communities that are high-
frequency analogs to the larger crinoid-bryozoan bioherms and brach-
iopod-sponge reefs developed on the large-scale, fourth-order maximum
flooding surface of upper San Andres 4. Prograding fusulinid shoals
downlap the siliciclastic wedges and are capped by regressively ac-
cumulated shelf sands, forming carbonate-dominated regressive hem-
icycles that are high-frequency analogs to highstand systems tracts.

Fourth- and fifth-order sequences in Last Chance Canyon show re-
markable similarities to third-order, seismic-scale depositional se-
quences (Fig. 12). Scale-independent similarities include: I, stratal
geometries; 2, the nature of bounding surfaces; 3, the timing of bioherm
development; 4, siliciclastic to carbonate facies evolution; and possibly
5, point-source to line-source evolution. This qualified "stratigraphic

self-similarity" probably results from the fact that changes in shelfal
accommodation, siliciclastic transport to the shelf margin, elastic poi-
soning effects on autochthonous carbonate generation and basin hydro-
graphic criteria critical to carbonate production (water depth, temperature,
nutrient flux and storm regime) were controlled similarly by third-,
fourth- and fifth-order relative changes in sea level.

Stratigraphic self-similarity emphasizes that the physical stratigraphy
of a sequence reflects spatial and temporal variations in accommodation/
sediment supply ratios but is relatively independent of absolute duration.
One of the most important aspects of stratigraphic self-similarity, best
documented within the highstand systems tract of upper San Andres 4,
involves the seaward transition from asymmetric shallowing-upward
hemicycles commonly observed on shelves, to symmetric cycles on
slopes, to asymmetric hemicycles at the toe-of-slope and seaward. Each
symmetric cycle includes an inferred deepening-upward phase or
"transgressive hemicycle,” characterized by a waning siliciclastic in-
fluence, succeeded by a shallowing-upward phase, or "regressive hem-
icycle," characterized by flourishing, prograding carbonates. Regressive
asymmetric hemicycles on the shelf and transgressive asymmetric hemi-
cycles in the basin each record approximately half the time spanned by
an entire high-frequency base-level rise and fall cycle; only within
symmetric cycles of slope settings is a relatively complete proportion
of the time recorded by rock of significant thickness. In the shelf and
basin, by contrast, surfaces and/or relatively condensed rock intervals
represent approximately half the time spanned by a cycle of base-level
change. Though infrequently documented in the literature, symmetric
cycles may be a common feature in slope settings.

The concept of qualified stratigraphic self-similarity does not dimin-
ish the importance of facies variation or "differentiation" (Sonnenfeld,
1992; Sonnenfeld and Cross, in press) within and among sequences.
Indeed, facies models abstracted from multiple facies successions taken
from various portions of larger-scale sequences are apt to be over gen-
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hemicycles within base-level transit cycles at these two spatial and temporal scales, a) Simplified version of depositional dip cross section A-A’ (Fig. 8) emphasizing
large-scale geometries and lithofacies relationships tor the upper San Andres sequence #4. b) Simplified version of Fig. 11, showing large-scale geometries and

lithofacies for an idealized high-frequency cycle within the middle highstand systems tract of upper San Andres #4.

eralized. Facies model predictability can be significantly refined by
recognizing that high-frequency cycles form fundamental units for ap-
plication of Walther's Law.
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