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University of Leeds, Leeds, LS2 9JT United Kingdom. 

Abstract- Alluvial-fan and axial-fluvial sediment deposited during the most recent stage of crustal extension 
in the Rio Grande rift of southern New Mexico is referred to as the Palomas Formation in the Palomas Basin 
and the Camp Rice Formation in basins to the south. These formations can be accurately dated and correlat
ed by (1) radioisotopically dated basalt flows, fallout ashes, and pumice-clast conglomerates interbedded with
in or inset against the formations, and (2) high-resolution reversal magnetostratigraphy, some sections of which 
incorporate dated volcanic rocks as chronologic tie points. The base of the formations correspond to either the 
Gauss (late Pliocene) or Gilbert ( early Pliocene) geopolarity chrons, depending upon position within the 
basins, and the ancestral Rio Grande may have arrived in southern New Mexico as early as 5 Ma. The age of 
the top of the formations, corresponding to the La Mesa and Cuchillo geomorphic surfaces and to the initia
tion of downcutting by the ancestral Rio Grande and its tributaries, is at or very near the Matuyama-Brunhes 
geopolarity chron boundary, at 0.78 Ma. 
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INTRODUCTION 

The sedimentary record of the most recent phase of crustal 
extension in the southern Rio Grande rift of New Mexico is the 
Palomas Formation in the Palomas Basin and the Camp Rice 
Formation in basins to the south (Fig. 1; Strain, 1966; Seager et al., 
1982, 1987; Lozinsky and Hawley, 1986a,b). Like most continental 
sediment, the Camp Rice and Palomas Formations are not easily 
dated and correlated. Vertebrate fossils have been discovered 
within the formations, corresponding to parts of the Blancan and 
Irvingtonian land mammal stages, but they are rare and widely scat
tered and do not provide the biostratigraphic control necessary to 
accurately date the base and top of the formations nor correlate 
between sections (Strain, 1966; Hawley et al. , 1969; Tedford, 1981; 
Lucas and Oakes, 1986; Repenning and May, 1986; Morgan et al., 
this guidebook). The most successful approach to dating the Camp 
Rice and Palomas Formations is reversal magnetostratigraphy, 
using radioisotopically dated volcanic and volcaniclastic rocks 
intercalated with the formations as chronologic tie points to the 
geopolarity time scale {Mack et al., 1993, 1996; Leeder et al., 1996). 
We present here a summary of paleomagnetic and radioisotopic 
data, along_ with new data recently collected. Of particular interest 
are constraints on (1) the age of the base of the formations, (2) the 
time of first appearance of the ancestral Rio Grande in southern 
New Mexico, and (3) the age of the constructional top of the for
mations. 

structional surfaces represent the surface of deposition of alluvial 
fans or the floodplain of the ancestral Rio Grande just prior to the 
initial phase of regional incision by the river and its tributaries. The 
process of incision and partial backfilling has placed the river 
approximately 100 m below the Cuchillo, La Mesa, and Jornada I 

GEOLOGIC SETTING 

The Camp Rice and Palomas Formations are exposed beneath 
mesas that flank the modern Rio Grande valley (e.g., West Mesa, 
Fig. 1) and in deeply incised tributary arroyos, such as Rincon 
Arroyo and Percha Creek (Fig. 1). In addition, the constructional 
top of the formations is preserved over a large area of southern 
New Mexico and has been mapped by Seager et al. (1982, 1987). 
This surface is referred to as the Cuchillo surface in the Palomas 
Basin (Lozinsky, 1986) and the La Mesa surface above axial-fluvial 
strata and Jornada I surface above piedmont strata of the Camp 
Rice Formation (Gile et al., 1981). These geomorphic surfaces are 
directly underlain by a stage IV and V petrocalcic paleosol several 
meters thick, which makes them resistant to erosion. The con-
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FIGURE 1. lndex map of southern New Mexico. Dotted pattern corre
sponds to exposures of the Plio-Plcistocene Camp Rice and Palomas 
Formations. 
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surfacfS and has produced a series of stepped geomorphic surfaces 
inset against the Camp Rice and Palomas Formations (Ruhe, 1962, 
1967; Gile et al., 1981). 

The maximum exposed thickness of the Camp Rice and Palomas 
Formations is about 135 m, although most sections are between 40 
and 100 m thick. Alluvial-fan sediment is primarily gravel/con
glomerate, with minor amounts of sand/sandstone and brown mud
stone. Alluvial-fan detritus is locally well lithified, especially along 
the eastern margin of the Palo mas Basin (Seager and Mack, 1991; 
in press) . Channel facies deposited by the ancestral Rio Grande is 
primarily pebbly sand/sandstone exhibiting trough and planar 
crossbeds, horizontal laminae, and ripple cross-laminae. Generally 
unconsolidated, the channel facies is well lithified on the south side 
of the Robledo Mountains (Box Canyon), near San Diego 
Mountain, and along the east side of the Rincon Hills (Fig. 1). In 
each case, cementation appears to be related to local geothermal 
activity. Also deposited on the floodplain of the ancestral Rio 
Grande were very fine sand and red-brown mudstone, some of 
which display calcic paleosols (Mack and James, 1992). Axial-flu
vial sediment of the ancestral Rio Grande is very widespread in 
southern New Mexico, having occupied six contiguous basins 
(Palomas, Hatch-Rincon, Jornada del Muerto, Corralitos, Mesilla, 
Tularosa Basins). The processes responsible for the spillover of the 
river between basins are described by Ruhe (1962), Hawley et al. 
(1969), and Mack et al. (1997). 
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VOLCANIC AND VOLCANICLASTIC ROCKS 
WITHIN THE CAMP RICE AND PALOMAS 

FORMATIONS 

Radioisotopically dated volcanic and volcaniclastic rocks within 
the Camp Rice and Palomas Formations provide important 
chronologic constraints on the age of the formations, as well as crit
ical chronologic tie points to the geopolarity time scale (Fig. 2). 
Three different types of volcanic rocks within or inset against the 
Camp Rice and Palomas Formations have been dated: (1) basalt 
lava flows, (2) pumice-clast conglomerates, and (3) fallout ashes. In 
addition, several fallout ashes that have been identified within the 
formations, but have not yet been radioisotopically dated, will also 
be discussed. 

Basalt flows 

Very few basalt flows within or inset against the Camp Rice and 
Palomas Formations have been dated. Among the oldest are two 
flows located within the Palomas Basin. One of the flows, dated by 
the K-Ar method at 4.5 ± 0.1 Ma by Seager et al. (1984), is located 
near the western pinchout of the hanging wall-derived sediment of 
the Palomas Formation. Although below or within the lowermost 
part of the Palomas Formation, this basalt does not necessarily 
define the lower limit for the age of the formation, because the sed
iment along the western margin of the basin may have on lapped the 
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FIGURE 2. Pliocene and Quaternary chronology, adapted from Berggren et al. (1995). 
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hanging wall dip slope of the Palomas half graben some consider
able time after initiation of the basin ( cf. Leeder and Gawthorpe, 
1987). The second basalt flow is interbedded with footwall-de rived 
alluvial-fan conglomerates of the Palomas Formation on the east
ern margin of the Palomas Basin, and has been dated by the K-Ar 
method at 3.1 ± 0.1 Ma by Seager et al. (1984). T hese two basalt 
flows indicate that at least part of the Palomas Formation is 
Pliocene, but they have not been used as chronologic markers for 
magnetostratigraphy. 

Pumice-clast conglomerates 

At least four times in Pliocene and early Pleistocene time explo
sive eruptions in the Jemez volcanic field of northern New Mexico 
choked the ancestral Rio Grande with pumice. The resultant 
pumice floods moved geologically rapidly downstream at least as 
far as the Las Cruces area, where pumice-clast conglomerates 0.2 to 
2.0 m thick were deposited within the Camp Rice Formation (Mack 
et al., 1996). The o ldest pumice-clast conglomerate recognized to 
date in southern New Mexico is located near Hatch Siphon (Fig. 1). 
It is approximately 0.5 m thick and is composed almost exclusively 
of pebbles and small cobbles of pumice. An age of 3.12 ± 0.03 Ma 
was determined for the Hatch Siphon pumice bed by 40ArP'Ar 
analysis of single crystals of sanidine taken from the pumice clasts 
(Mack et al., 1996). The Hatch Siphon pumice-clast conglomerate 
constitutes a chronologic tie point for a magnetostratigraphic pro
fi le of the same name (Fig. 3). 

The youngest dated basalt flows are located southwest of Las 
Cruces on the West Mesa, where they overlie the constructional top 
of the Camp Rice Formation. These basalts include Aden Crater, 
the Afton volcanic field, and cinder cones and their associated lava 
flows that erupted near the rim of the mesa and flowed onto inset 
terraces. Using the K-A r method, Seager et al. (1984) dated the 
lava lake of Aden Crater at 0.53 ± 0.04 Ma, the Afton flow at 0.53 
± 0.03 Ma, a flow two kilometers west of the mesa rim at 0.49 ± 0.03 
Ma, and the Santo Tomas flow at 0.55 ± 0.03 Ma. In contrast, the 
basalts that occupy inset surfaces were also dated by the K-Ar 
method to be around 0.2 Ma (Hoffer, 1971), and Anthony and 
Poths (1992) used 3He surface exposure dating to obtain ages of the 
Afton flows ranging from 81 to 72 ± 4 ka, of the Aden complex 
from 18.2 to 15.7 ± 2-3 ka, and for one of the cones near the edge 
of the West Mesa from 69 to 85 ± 4--7 ka. Given the wide disparity 
in these dates, they are of limited value in providing an upper limit 
for the age of the Camp Rice Formation. 

The most widespread pumice-clast conglomerate is present at 
four separate locations in southern New Mexico and has been 
dated at around 1.6 Ma (Mack et al., 1996), an age that makes it 
correlative with the lower Bandelier tuff of the Jemez volcanic 
field. The 1.6-Ma pumice conglomerate locally consists of two 
parts. The lower part, which is up to 0.5 m thick, is composed of 
pebbles, cobbles, and small boulders of pumice (Fig. 4 ). The upper 
part, which may exist by itself, consists of 1 to 2 m of crossbedded 
granule and pebble-sized pumice mixed with fluvial sand. The 1.6-
Ma pumice conglomerate is an important chronologic tie point for 
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FIGURE 4. Photograph of the pumice-clast conglomerate exposed at 
Rincon Arroyo. Hammer is 25 cm long. 

the Rincon Arroyo magnetostratigraphic section, as well as provid
ing age constraints on those stratigraphic sections that have not 
been sampled for magnetostratigraphy (Fig. 3). Among the other 
pumice-clast conglomerates present in southern New Mexico, two 
at La Union have been dated near 1.3 Ma and either represent the 
upper Bandelier eruption or eruptive events between the two 
Bandelier eruptions (Fig. 3; Mack et al., 1996). Finally, it is not 
known whether two other pumice-conglomerates, dated at 1.84 ± 
0.26 and 2.22 ± 0.27, represent distinct events or the same event, 
because of the large standard deviations of the age (Mack et al., 
1996). These pumice-conglomerates are not used as tie points for 
magnetostratigraphy. 

Fallout ash 

Three thin ( <1 m) fallout ashes in southern New Mexico have 
been correlated with specific Pleistocene volcanic eruptions in the 
western United States, based primarily on their physical and chem
ical properties. There are two localities of the Bishop luff, one 
interbedded with piedmont facies near the top of the Camp Rice 
Formation near Anthony Gap (Hawley, 1975; Kelley and Matheny, 
1983), and the other exposed in the Grama railroad cut (Seager and 
Hawley, 1973). In addition to geochemical analysis, the ash at 
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Grama (Mack et al., 1993). 
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Grama has also been radioisotopically dated using fission tracks as 
0.754 ± 0.2 Ma (Kortemeier, 1982), supporting correlation with the 
Bishop tuff, which has been dated at 0.74 Ma (Izett et al., 1988; 
Sarna-Wojcicki et al., 1991). The third Pleistocene fallout ash in the 
study area is exposed near the top of Ash Mesa in Selden Canyon 
(Seager et al., 1975) and has been correlated, based on its geo
chemical properties and on its normal geomagnetic polarity, with 
the 0.61 Ma Lava Creek B tuff of the Yellowstone caldera 
(Reynolds and Larson, 1972; lzett, 1981). The Bishop ash at 
Grama and the Lava Creek B ash at Ash Mesa were used as 
chronologic tie points in magnetostratigraphic sections by Mack et 
al. (1993)(Fig. 5). 

In addition to the Pleistocene ashes described above, three other 
fallout ashes have been discovered along the eastern margin of the 
Palomas Basin, at Red Canyon (called the Las Palomas ash by 
Lozinsky and Hawley, 1986b), north of Ash Canyon, and Wildhorse 
Canyon (Figs. 6 and 7). The Las Palomas ash is 1.4 m thick, the 
Wild Horse Canyon ash is 2.5 m thick, and the North Ash Canyon 
ash is 4.6 m thick, and all three are laterally discontinuous. The 
ashes are white to light gray in color and are composed primarily of 
glass shards and secondarily of silt to fine sand-sized crystals of 
quartz, sanidine, plagioclase, and biotite. At Wild Horse and North 
Ash Canyons, the lower part of the ash is structureless and proba
bly represents little modified air-fall tephra, whereas the upper part 
is well bedded and exhibits horizontal laminae and ripple cross
laminae, suggesting reworking by water or wind. The Las Palomas 
ash at Red Canyon has a thin (50 cm) structureless lower part with 
a thin (3 cm) shale parting, overlain by about 30 cm of well-bedded 
ash, followed by 60 m of structureless ash (Fig. 8). None of the 
three ash beds have been radioisotopically dated, but because of 
their great thickness and stratigraphic position within the 
Pliocene-early Pleistocene Palomas Formation were probably 
derived from eruptions in the Jemez volcanic field , perhaps corre
sponding to the Baodelier eruptions. Magnetostratigraphic sec
tions include two of the ashes, the Las Palomas ash at Red Canyon 
and the ash at Wild Horse Canyon (Fig. 7). 

MAGNETOSTRATIGRAPHY OF THE CAMP 
RICE AND PALOMAS FORMATIONS IN 

SOUTHERN NEW MEXICO 

Twenty-five stratigraphic sections of the Camp Rice and Palomas 
Formations in southern New Mexico have been collected to deter
mine polarity reversals. The majority of these have been collected 
by Mack et al. (1993) (13 sites), Leeder et al. (1996) (7 sites), and 
G. H. Mack (unpub. data) (1 section); ten of these magnetostrati
graphic sections are shown here (Figs. 3, 5, 7, and 9). In addition, 
Vanderhill (1986) sampled three sections on the West Mesa near 
and south of La Union, and Repenning and May (1986) sampled 
one site near Truth or Consequences. Both Vanderhill (1986) and 
Repenning and May (1986) only sampled mudstones or well con
solidated very fine sandstones, and there are large gaps in their pro
files corresponding to thick sand channels. Moreover, neither 
Vanderhill (1986) nor Repenning and May (1986) had radioisotopi
cally dated volcanic rocks as chronologic tie points to the geopolar
ity reversal time scale. However, the thin stratigraphic interval (20 
m) sampled by Repenning and May (1986) yielded a Blancan ver
tebrate fauna. 

The magnetostratigraphic sections of Mack et al. (1993) and 
Leeder et al. (1996) have an advantage over those of Vanderhill 
(1986) and Repenning and May (1986) because they involve a clos
er spacing of samples (0.5-2.0 m) and because not only mudstones 
and fine sand/sandstones were sampled, but coarser channel sands 
were sampled as well. Well-lithified sandstones and some well-
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Wild Horse Canyon lithified mudstones were sampled using standard drilling tech
niques, while unlithified sand, silt, and poorly lithified mudstones 
were sampled by pounding a nonmagnetic steel tube into the sedi
ment and transferring the oriented sample into a quartz-glass tube, 
which was later cemented using sodium silicate and high-tempera
ture alumina. Samples were demagnetized with a series of alter
nating field demagnetization steps, which removed the soft viscous 
remanent magnetization. This was followed by step-wise thermal 
demagnetization at several temperatures up to 675°C. The prima
ry magnetic component in the samples is from magnetite. 

The magnetostratigraphic sections of Mack et al. (1993) also 
have an advantage in that some contain radioisotopically dated vol
canic rocks to act as chronologic tie points to the geopolarity time 
scale. These include pumice conglomerates at Hatch Siphon and 
Rincon Arroyo and the Bishop ash at Orama (Figs. 3 and 5). In 
addition, for many of the sections, the constructional top of the for
mations, either the La Mesa surface for the Camp Rice Formation 
or the Cuchillo surface for the Palomas Formation, provides an 
approximate time line for correlation of the sections (Figs. 3, 7, and 9). 

DISCUSSION 

The age of the Camp Rice and Palomas Formations in southern 
New Mexico is well constrained by a combination of radioisotopi
cally dated basalts, volcanic ashes, and pumice-clast conglomerates 
within and inset against the formations, as well as by high-resolu
tion reversal magnetostratigraphy. The lower part of the Camp 
Rice and Palomas Formations is Pliocene in age, as originally sug
gested by Hawley (1975, 1981). The Palomas Formation contains a 
3.1 Ma basalt flow and the Camp Rice Formation contains the 3.12 
Ma pumice-clast conglomerate at Hatch Siphon (Fig. 3). Moreover, 
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there is ample evidence for sediment deposited during the Gauss 
geopolarity chron in both formations (cf. Fig. 2 and Figs. 3, 7, and 
9). The best documented Gauss-age sediment is at Hatch Siphon, 
where the radioisotopically dated pumice-clast conglomerate (3.12 
Ma) falls within the Kaena subchron (3.0-3.11 Ma)(cf. Figs. 2 and 
3). Not surprisingly, the age of the base of the formations varies 
depending upon position within the basins. At Hatch Siphon (Fig. 
3), as well as at other locations documented by Mack et al. (1993), 
the base of the Camp Rice Formation does not appear to cross the 
Gauss-Gilbert boundary, defining a lower limit of 3.58 Ma (Fig. 2). 
However, at the Garfield sections (Fig. 9), which correspond to a 
more basin-center position compared to Hatch Siphon, there is evi
dence of Gilbert-age sediment, perhaps including the three 
youngest subchroos (Cochiti, Nunivak, Sidufjall; cf. Fig. 2). 
Similarly, Repenning and May (1986) also suggested the existence 
of Gilbert-age sediment in the Palomas Formation, including the 
presence of the Nunivak subchron (4.48-4.62 Ma; Fig. 2). The 
Garfield West section also is important in determining the first 
appearance of the ancestral Rio Grande in southern New Mexico. 
The presence of three subchrons of the Gilbert Chron and reversed 
polarity beneath the lowest one (Sidufjall subchron) sets a lower 
limit for deposition of the axial-fluvial sediment of 4.98--5.23 (the 
top of the Thvera subchron) (cf. Figs. 2 and 9). 

T he age of the upper part of the Camp Rice and Palomas 
Formations is latest Pliocene and early Pleistocene, corresponding 
to the Matuyama Chron. Pumice-clast conglomerates dated at 
around 1.6 and 1.3 Ma indicate an early Pleistocene age. The best 
documented Matuyama section is at Rincon Arroyo (Fig. 3), where 
all four subchrons were identified and corroborated by the 1.6 Ma 
pumice-clast conglomerate (Fig. 3). Although the other sections 
depicted in Figures 3, 7, and 9 do not contain radioisotopically 
dated volcanic rocks, the predominance of reversed polarity in the 
upper parts of these sections is consistent with a Matuyama age. 
Applying this reasoning, the undated thick fallout ash at Red 



234 

I 

l 1t· .. 
FIGURE 8. Photograph of the lower part of the Las Palomas ash at Red 
Canyon in the Palomas Basin. Hammer is 25 cm long. 

Canyon (Las Palomas ash) is Matuyama in age, an interpretation 
consistent with its derivation from one of the Pleistocene Bandelier 
eruptions of the Valles caldera (Fig. 7). However, the undated ash 
at Wild Horse Canyon appears to be positioned near the top of the 
Gauss geopolarity chron, suggesting it may predate the Pleistocene 
Bandelier eruptions (Fig. 7). 

The age of the constructional top of the formations, correspond
ing to the La Mesa and Cuchillo surfaces, appears to be at or very 
near the Matuyama-Brunhes boundary, 0.78 Ma (Fig. 2). The 
Rincon Arroyo section is again especially instructive because there 
is reversed polarity, but no normal polarity, above the Jaramillo 
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subchron (Fig. 3). Indeed, for all of the sections that contain the 
constructional top, reversed polarity extends to the top of the sec
tions, suggesting the Matuyama-Brunhes boundary was not crossed 
(Figs. 3, 7, and 9). Possible exceptions include the Lucero Arroyo 
section of Mack et al. (1993) and one of the three sections of 
Yanderhill (1986), both of which contain normal polarity at or near 
the top of the sections. However, the Lucero Arroyo section has a 
condensed Matuyama interval (only 12 m thick, compared to 50 m 
at Rincon Arroyo), and it is not clear if the normal polarity near 
the top corresponds to the Brunhes Chron or one of the subchrons 
in the Matuyama. It also is not clear how the normal polarity near 
the top of the section of Yanderhill (1986) should be interpreted, 
because of the large gaps in the spacing of the samples. The pres
ence of the Bishop ash (0.74 Ma) within the Camp Rice Formation 
at Anthony Gap (Hawley, 1975; Kelley and Matheny, 1983), if 
properly correlated, suggests that at least locally deposition of the 
Camp Rice Formation continued past the Brunhes-Matuyama 
boundary. It is noteworthy that the Bishop ash at Anthony Gap 
is located very close to the mountain front, an area expected to be 
the last affected by headward erosion of a incising alluvial-fan 
channel. 

The age of the top of the Camp Rice and Palomas Formations is 
also constrained by the ashes at Ash Mesa and Grama (Fig. 5). The 
Ash Mesa ash, which has been correlated with the Lava Creek B 
eruption at Yellowstone (0.61 Ma; Reynolds and Larson, 1972; 
Seager et al., 1975) is interbedded with sediment inset against the 
Camp Rice Formation (Mack et al., 1993). Thus, downcutting by 
the ancestral Rio Grande and its tributaries at Ash Mesa had 
begun prior to 0.61 Ma. At Grama, the Bishop ash (0.74 Ma) is 
positioned directly beneath inset gravels, but it is not clear whether 
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FIGURE 9. Magnetostratigraphic sections in the southern and western parts of the Palomas Basin (Mack et al., 1993; Leeder et al., 1996). 
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mudstone beneath the ash is inset alluvium or part of the Camp 
R ice Formation. If it is the former, then downcutting began during 
the latest Matuyama, and if the latter, then the top of the Camp 
Rice Formation at this location extended into the earliest Bruhnes. 
Either way, downcutting began very near or at the Matuyama
Brunhes boundary. 

Finally, the ability to consisten tly pick chron boundaries a llows 
correlation of the Camp Rice and Palomas Formations with a 
degree of accuracy not possbile by other techniques. The resultant 
detailed correlations permit basinwide comparison of depositional 
rates and processes (e.g., Mack et al., 1994a, 1997; Leeder et al., 
1996), as well as provide the chronologic control for estimates of 
paleoclimatic change through the late P liocene and early 

Pleistocene (Mack et al., 1994b ). 
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