Summary of southeast New Mexico basement rocks

Peter T. Flawn, 1954, pp. 114-116

in:
Southeastern New Mexico, Stipp, T. F.; [ed.], New Mexico Geological Society 5th Annual Fall Field Conference Guidebook, 209 p.

This is one of many related papers that were included in the 1954 NMGS Fall Field Conference Guidebook.

Annual NMGS Fall Field Conference Guidebooks

Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico.

Free Downloads

NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks.

Copyright Information

Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. No material from the NMGS website, or printed and electronic publications, may be reprinted or redistributed without NMGS permission. Contact us for permission to reprint portions of any of our publications.

One printed copy of any materials from the NMGS website or our print and electronic publications may be made for individual use without our permission. Teachers and students may make unlimited copies for educational use. Any other use of these materials requires explicit permission.
This page is intentionally left blank to maintain order of facing pages.
1. The development drift on the "vein" failed to indicate mineable reserves of ore;
2. the ore obtained during exploration proved to be very low grade, less than 0.1% U₂O₅;
3. haulage costs to truck the ore to the Grants milling area would have been high,
4. the ore would have been difficult to process, probably requiring roasting before the uranium could be extracted, and as such may not have been acceptable to the AEC or uranium mill.
5. a large penalty for high carbonate content would have been levied against the ore, since CaCO₃ content over 6% greatly reduces the monetary value of any uranium ore.

Over 450 claims for uranium have been filed in Eddy County since the original discovery in Rock Arroyo. However, all of these filings have been made on the strength of the single occurrence of uraniferous hydrocarbon discovered by Price and Pitts. Therefore, although the Rocky Arroyo occurrence is an interesting one, I do not believe that this prospect or the Guadalupe Mountains as a whole ore will be an important uranium producing area. In Lea County the only known occurrence of uranium to date has been the discovery of trace amounts of carnotite in a clay pit near Pearl, 15 miles west of Hobbs by two Lovington prospectors, D.E. Moreland and F.H. Hooper. Moreland and Hooper obtained a state placer prospecting permit for one year on 400 acres in Section 23 and 100 acres in Section 14 T 19 S, R 35E, near the currently drilling Shell No. 1 Hooper wildcat oil well in the hope that commercial uranium ore would exist underground. The hope was based on traces of carnotite found in an old clay pit, once used as a source of drilling mud in the Hobbs field. The clay pit is on patented land in Section 24 and was not leased by Moreland and Hooper.

Extensive tests by Moreland and Hooper in Sections 14 and 23, including one cable tool hole drilled into the red beds in the SE 1/4 have failed to indicate the presence of uranium at any depth.

Specimens from the clay pit (not on Moreland and Hooper's prospecting permit) containing visible specks of carnotite were analyzed by the AEC. They contained 0.006% U₂O₅, which is far below the minimum grade of acceptable ore. This occurrence of carnotite in red Tertiary clay is believed to be of mineralogical importance only and is not regarded as economically significant.
BASEMENT ROCKS OF SOUTHEAST NEW MEXICO

EXPLANATION

S-D M
Approximate boundary separating formations of different ages resting on the basement (C, Cambrian; O, Ordovician; S, Silurian; D, Devonian; M, Mississippian; P, Pennsylvanian)

KKK
Zone or area of cataclastic metamorphism (shearing, crushing, mylonitization)

Contour on the basement surface; interval 500 feet (datum is mean sea level)

Fault or fault zone in basement rocks

Fig. 1
asedimentary, metavolcanic, volcanic, and plutonic rocks which, when viewed in the light of exposed Precambrian rocks farther west and the few available absolute age determinations, suggests an orogenic belt west of the Texas craton in late Precambrian time. The essentially granitic craton takes in parts above sea level. The contours on the basement surface shown on the map (fig. 1) are based on wells that actually penetrated basement rocks, and no estimated depths from Ellenburger wells are included.

In central Chaves county, northern Lea and southern Roosevelt counties, and parts of Curry and Quay counties the basement rocks are volcanic rocks, mostly undeformed and unmetamorphosed rhyolite flows and tuffs. These rocks are much more extensively developed to the east in the Texas Panhandle, and hence the name Panhandle volcanic terrane has been adopted. Petrographic study shows this terrane to be composed mainly of rhyolitic extrusive and pyroclastic rocks with subordinate trachytic and andesitic types and shallow intrusions of rhyolitic and granitic rocks. The rocks of the Panhandle volcanic terrane appear to have been extruded and deposited as a relatively thin mantle on the surface of the older craton which presumably extends beneath the volcanic rocks.

In Roosevelt and southern Curry counties, and extending eastward into Texas, basement rocks are composed largely of gabbro and diabase. Again this terrane is more extensively developed in the southern Texas Panhandle—poor well control makes it difficult to define its limits in New Mexico. The gabbroic rocks appear to be younger than the volcanic rocks of the Panhandle volcanic terrane for gabbro and diabase sills intrude the volcanic section. The gabbroic terrane proper seems to be a great lobolith or stratiform body occupying a major basement sag or syncline, floored by the Panhandle volcanic terrane, which in part coincides with the structural low of the Plainview or Palo Duro basin. The lack of a gravity maximum over these dense gabbroic rocks supports the concept of a relatively thin rootless stratiform body probably originating through a complex of sheet-like intrusions.

Configuration of the basement surface. - The basement surface in southeast New Mexico rises to the east, north, and west of the Delaware basin where it lies more than 13,000 feet below sea level. On the east the surface rises rapidly on the Central Basin Platform to elevations between -5,000 and -4,000 feet; to the northwest the rise is more or less continuous until in eastern Otero and southwestern Chaves counties the basement surface is more than 4,000 feet above sea level. The contours on the basement surface shown on the map (fig. 1) are based on wells.

Two major basement faults or fault zones are shown on figure 1. Undoubtedly many other faults that can be recognized in the overlying sedimentary mantle also displace basement rocks, but throughout this project the writer was preoccupied with those major features of the basement that could be developed from a study of basement data. The northwest-trending fault at the north end of the Central basin Platform in Lea County, New Mexico, and Gaines County, Texas, is indicated by abrupt discontinuity in the configuration of the basement surface. The existence of the northwest-trending fault zone in southwestern Roosevelt County is shown by three lines of evidence. It was first suspected when a study of well samples from that area showed a more or less linear zone of cataclastic metamorphism in the basement rocks (crushing, shearing, mylonitization). Contouring on the basement surface indicated a topographic discontinuity along the same zone. Plotting of contacts between formations of different ages resting directly on the basement revealed an offset along the trend.

The map (fig. 1) shows, in addition to the basement geology, the formation resting on the basement. This is the surface that might be seen by an observer looking upward from the basement. A study of the relationships of the formations in contact with basement rocks reveals, to some degree, the Paleozoic history of the Precambrian rocks. Analysis of relationships between the formations resting on the basement in the vicinity of the northwest-trending fault zone in southwestern Roosevelt County, for example, reveals several periods of Paleozoic movement. Post-Ordovician and pre-Silurian (or Devonian) elevation of the northeast side of the fault resulted in a partial stripping of the Cambro-Ordovician cover from the basement rocks. Uplift of the northeast side and partial removal of older Paleozoic rocks again took place prior to deposition of Permo-Pennsylvanian rocks that rest directly on basement on part of the northeast block.

References
