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INTRODUCTION

Accumulations of colorful low density, soil-like material coat 
the walls, floors and ceilings of several caves in the Guadalupe 
Mountains, NM. The most abundant deposits are found in Lechu-
guilla and Spider Caves and occur in a spectrum of color from 
light pink, to blood red, brick red, ocher, brown, chocolate brown 
and jet black. They consist of several layers: the outer-most col-
ored layer is mm to cm in thickness and beneath that, a layer 
of soft, altered bedrock is usually present (Fig. 1). This under 
layer, called “punk rock” by Hill (1987), occurs in shades of pink, 
yellow or white and may extend many cm into the wall, even-
tually grading into hard, unaltered carbonate bedrock.  The col-
ored deposits are diverse in composition with variable amounts 
of clay, quartz, and Al-oxyhydroxide minerals and all are rich in 
Mn- and Fe-oxides. In general, they can be called ferromanganese 
deposits (FMD), a term that describes accumulations of Fe- and 
Mn-oxides from a wide range of environments such as marine 
manganese nodules, soil nodules, and iron and manganese seeps 
(Ghiorse and Ehrlich, 1992). 

ORIGIN OF CAVE FMD

The oxide-rich layer was originally called “corrosion residue” 
and was believed to be the insoluble residue from either attack of 
corrosive air on the carbonate bedrock (Queen, 1994) or insoluble 
material remaining on the bedrock after sulfuric acid speleogen-
esis (Davis, 2000; Polyak and Provencio, 2001). In the process of 
condensation corrosion, warm moist air rises by way of Rayleigh-
Bernard convection to a cave passage ceiling where water is con-
densed on the ceiling and upper walls, presumably because these 
areas are slightly cooler due to the geothermal gradient (Sarbu 
and Lascu, 1997). The condensed water absorbs CO2 from the air 
to form carbonic acid that then corrodes the carbonate bedrock. 
Thus, in this model the FMDs represent the insoluble residue left 
after the dissolution of the bedrock by the weak acid. However, 
the Fe and Mn in the FMD is many times more enriched than can 
be explained by acidic dissolution of carbonate, either as a result 

of condensation corrosion or from speleogenesis. Simple dissolu-
tion of Guadalupe carbonate bedrock by acids ultimately leaves a 
silica-rich residue with slightly enriched Fe2O3 and barely detect-
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FIGURE 1. Collecting a sample of chocolate-brown ferromanganese 
from the ceiling of Snowing Passage in Lechuguilla Cave. Photo by Val 
Hildreth-Werker. See Plate 13B for a color image of a FMD.
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able MnO, whereas the FMD are strongly enriched in Fe- and Mn 
oxides (Spilde et al., 2005). 

Cunningham et al. (1994) observed evidence of microbial prod-
ucts in these deposits using scanning electron microscopy (SEM) 
and postulated that there may be a biotic process involved in the 
creation of the cave FMD (Cunningham et al., 1995).  Northup 
at al. (2000, 2003), Boston et al. (2001), and Spilde et al. (2005) 
developed a model in which FMDs are the result of microbial 
activity. In this model, shown in Figure 2, microbes release organic 
acids, which break down the carbonate bedrock in the punk rock 
layer releasing Fe(II) and Mn(II) present in trace amounts in the 
carbonate minerals. Iron- and manganese-oxidizing microbes uti-
lize the reduced Fe and Mn, oxidizing the elements as an energy 
source. The microbes may transport the released Fe and Mn from 
the punk rock zone with chelating ligands or through networks of 
exopolysaccharides. The oxidized respiration products build up in 
the oxide layer as Fe(III) and Mn(IV) oxides. 

CHEMISTRY AND MINERALOGY OF CAVE FMD

The cave FMDs are chemically and mineralogically distinct 
from the underlying bedrock, which consists of dolomite or cal-
cite. In general, backreef bedrock is predominantly dolostone 
and the reef bedrock is predominantly calcite; detailed stratig-
raphy of the Guadalupe Mountains can be found in Hill (1996). 
Spider Cave is located entirely within the backreef, and Lechu-
guilla Cave spans both backreef and reef rocks. Table 1 lists the 
minerals that have been identified in the bedrock and FMD and 
their approximate abundances.  Although calcite or dolomite are 
present in the FMD, their abundances are diminished, and new 
minerals, such as Al-hydroxides and Fe/Mn oxy-hydroxides have 
appeared.  Lithiophorite [(Al,Li)Mn4+O(OH)2], nordstrandite and 
gibbsite [Al(OH)3], goethite, kaolinite, and illite have been identi-
fied by XRD and SEM/EDX analysis. TEM examination revealed 
that much of the abundant Fe- and Mn-oxides are poorly crys-
talline, consisting of nanometer- and micrometer-sized domains 
of coherent crystal lattice. Todorokite [(Mn2+,Ca, Na, Mg,K)Mn 

4+
3O7•H2O] and birnessite [(Ca,Na)0.5(Mn4+,Mn3+)2O4•1.5H2O] 

have been identified in the FMD by synchrotron micro-XRD (X-
ray diffraction) (Boston et al., 2004).

Table 2 provides analyses of representative samples of the 
bedrock, punk rock and several colors of FMD to demonstrate the 
change in chemistry across the constituent layers. The major car-
bonate components, Ca and Mg, are depleted relative to original 
bedrock composition; the absolute concentration of most other 
elements is increased by the loss of carbonate. However, the rela-
tive proportion of the residual elements when compared to an 
insoluble element such as Ti varies significantly. Silica from clay 
and detrital quartz and feldspar in the bedrock is depleted relative 
to TiO2 in the dark FMD whereas Fe and  Mn are generally much 
higher than expected. Iron and Mn in the oxide layer are hundreds 
to thousands of times enriched relative to the underlying bedrock; 
Fe2O3 in the oxide layer may be as high as 78 wt%  compared 
to less than 1 wt% in the bedrock and MnO as much as 22 wt% 
compared to 200 ppm or less in the bedrock. Not only are these 
elements strongly enriched, the Mn/Fe ratio increases by an order 

of magnitude from around 0.07 in the bedrock and most of lighter 
colored FMDs to 0.8 in the dark FMD, suggesting an enrich-
ment of manganese over iron (Spilde et al., 2005). Likewise, the 
porosity increases and bulk density decreases dramatically from 
bedrock, through punk rock, to the oxide layer, which is usually 
much less than 1 g/cm3 after drying. The strong enrichment of 
Fe and Mn oxides in the FMD and the marked increase of Mn:
Fe ratios indicate a mass transfer from the punk rock to the outer 
oxide layer, while Ca and Mg are removed from both layers and 
and Si is depleted in the outer layer.

MICROBIOLOGY OF CAVE FMD

Northup et al. (2000, 2003) demonstrated that there is a diverse 
microbial community present in the FMD in Lechuguilla and 
Spider Caves, including a high percentage of mesophilic Archaea 
in one site. Identified from community DNA were clones whose 
closest relatives are iron or manganese oxidizers or reducers, 
although, in general, the similarity values were low.  Nearest 
relatives known to oxidize or reduce iron or manganese include 
Hyphomicrobium, Pedomicrobium, Leptospirillum, Stenotroph-
omonas, and Pantoea (Northup et al., 2003). DNA extracted from 
cultures inoculated with FMD from the Rainbow Room in Lechu-
guilla Cave more clearly demonstrated the presence of putative 
manganese oxidizers with closest relatives including species of 
Bacillus and Alcaligenes, organisms that have been reported to 
oxidize manganese (e.g., Francis and Tebo, 2002 for Bacillus and 
Abdrashitova et al., 1990 for Alcaligenes).

Epifluorescent microscopy showed extensive microbial com-
munities present in both the oxide layer and punk rock (on the 

FIGURE 2. Schematic model of the ferromanganese deposit. Microbes 
(1) generate organic acids (2) that break down carbonate bedrock (3) 
releasing Fe(II) and Mn(II) from the carbonate mineral structure. The 
reduced elements are transported in the form of metal chelates (4) or 
exopolysaccharides to the microbial community where microbial oxida-
tion takes place, with oxides accumulating at the cave-air interface (5). 
Modified from Northup et al., 2000.
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order of 107 cells per cm3). Analysis of total cell numbers showed 
that highest numbers of cells were seen at interfaces, the pink/
white interface between oxide layer and punk rock, and the black/
brown interface between the oxide layer and the atmosphere of 
the cave.  Studies done to ascertain the portion of metabolically 
active cells present demonstrated that higher activities are seen 
in darker FMDs and in the punk rock, where higher numbers of 
prosthecate (i.e., stalked) bacteria are observed.  We believe that 
this lends support to a biogenic hypothesis for FMDs because two 
known manganese oxidizers (Pedomicrobium and Hyphomicro-
bium) are prosthecate bacteria that are similar in morphology to 
those observed in FMDs and punk rock. Organisms cultured from 
the cave deposits have slowly produced in the laboratory an array 
of Fe- and Mn oxideminerals that are present in the cave FMDs, 
e.g., birnessite (Boston et al., 2001). 

SPELEOSOL: A NEW TYPE OF SUBTERRANEAN SOIL

Cave FMD are similar in many ways to laterite soils (oxisols). 
Sedimentary 2:1 clays (e.g., smectite, illite) are converted to 1:1 
clays (e.g., kaolinite) (Sposito,1989); soluble elements such as 
K, Ca, Na, Mg, Si are leached from the system; other elements 
such as Al, Fe and Mn are enriched in sesquioxides; and insolu-
ble trace elements (Ti, Zr, Nb) are enriched (Buol and Eswaran, 
2000). Other trace elements like Ni are sequestered in oxides, 
especially Mn-oxides that are powerful scavengers of transition 
metals (Manceau et al., 2002). 

Both todorokite and birnessite have been identified in these 
deposits. These minerals are also present in both soils and desert 
varnish, environments believed to be strongly influenced by 
microbial communities. Birnessite is the most common Mn-min-
eral found in soils (Sposito,1989) and todorokite is widely cited 

Mineral                 Formula                                                                                       Approximate abundance:
                � omanganese        Bedrock
Mn-oxides:
Birnessite (Ca,Na)0.5(Mn4+,Mn3+)2O4•1.5H2O m -
Lithiophorite (Al,Li)MnO3(OH)2 M -
Rancieite (Ca, Mn2+)Mn4+

4O9•3(H2O) T -
Todorokite (Mn2+,Ca,Na,Mg,K)Mn3O7•H2O m -
Fe-oxides:
Goethite α−FeO(OH) M -
Hematite Fe2O3 m T
Lepidocrocite FeO(OH) m -
Clays:
Dickite Al2Si2O5(OH)4 T T
Halloysite Al2Si2O5(OH)4 T -
Illite (K,H3O)(Al,Mg,Fe)2(Si,Al)4O10[(OH)2,(H2O)] M T
Kaolinite Al2Si2O5(OH)4 m T
Montmorillonite (Na,Ca)0.3(Al,Mg)2Si4O10(OH)2•n(H2O) - T
Al-hydroxides
Diaspore α−AlO(OH) T -
Gibbsite Al(OH)3 m -
Nordstrandite Al(OH)3 M -
Phosphates:
Apatite Ca5(PO4)3(OH,F,Cl) T T
Goyazite SrAl3(PO4)2(OH)5• (H2O) m -
Monazite (Ce,La)PO4 - T
Rhabdophane (Nd,Ce,La)PO4•H2O T -
Svanbergite SrAl3(PO4)(SO4)(OH)6 m -
Others:
Calcite CaCO3 m M
Dolomite CaMg(CO3)2 m M
Ilmenite FeTiO3 T T
Rutile TiO2 T T
Quartz SiO2 m m

M = major (> 10%)
m = minor (< 10%)
T = trace (< 1%)

TABLE 1. Minerals identified in the bedrock and ferromanganese, with approximate abundance.
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as a product of microbial Mn(II) oxidation (Tebo et al., 1997 and 
references therein).  Desert varnish, partially a product of micro-
bial activity (Nagy et al., 1991), contains clays interlayered with 
Mn- and Fe-oxide minerals. Like desert varnish, a diverse micro-
bial community has been identified in the cave deposits by 16S 
rDNA sequence analysis, and includes microorganisms whose 
closest relatives are manganese- and iron-oxidizing bacteria and 
nitrogen-fixing bacteria.  Both communities have yielded genetic 
sequences that group with species from the Actinobacteria, Pan-
toea agglomerans, Comamonas spp., Rhizobium spp., and Bacil-
lus spp.

The similarities in mineral composition to that of some soils 
and the presence of a diverse microbial community suggests that 
these cave deposits may undergo a development process similar 
to terrestrial soil. Both chemical and microbial processes may 
influence the formation of the ferromanganese cave deposits. 
Chemical weathering from the condensation of weak carbonic 
acid in Bernard-Rayleigh convection cells in the caves may 
contribute to the breakdown of the bedrock carbonate (Queen 
1994). However, microbial breakdown of bedrock probably 
plays a more significant role. The oxidation of Fe(II) and Mn(II) 
releases H+ ions, and the microorganisms themselves may release 
organic acids, both of which contribute to dissolution of carbon-
ate. The residual weathered products, rich in secondary minerals 
and organic matter, are essentially subterranean soils. Thus, the 
term “corrosion residue” to describe these deposits is misleading, 
since it suggests that the material is derived only from condensate 
corrosion or acid speleogenesis. On the other hand, ferromanga-
nese deposits is a general term that refers to composition only and 
does not suggest an origin. Perhaps a more appropriate term for 
these deposits, refering to their soil-like properties and deriva-
tion, would be  “speleosol” or cave soil.
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dolostone rock brown

% Lost in 
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