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ABsTRACT — We briefly describe the geology, petrography and chemistry of rocks from the resurgent dome of Valles caldera
using recently published 1:24,000 geologic mapping, supported by thin section examinations and chemical analyses. Eruptive
rocks consist of lavas and tuffs of rhyolite to high-silica rhyolite. A 110 m-thick section of densely welded ignimbrite exposed
along Redondo Border apparently correlates with the two uppermost stratigraphic units of the Tshirege Member, Bandelier Tuff
on the Pajarito Plateau east of the caldera. Caldera collapse breccias consist of Quaternary Otowi Member of Bandelier Tuff,
Miocene to Pliocene volcanic rocks, Permian to Miocene clastic rocks, and Pennsylvanian limestone. The age, petrography
and chemistry of the volcanic collapse breccias resemble those described for the Tschicoma and Paliza Canyon Formations in
the surrounding Jemez Mountains. Early caldera-fill debris flow, fluvial, and lacustrine sediments are derived from the above
lithologies but tend to have higher silica and less total alkalis than source rocks due to chemical weathering and hydrothermal
alteration. Altered rocks and veins are silica-rich and alkali-poor, and generally contain enhanced iron, sulfur and arsenic
values. Rhyolite vitrophyre from ignimbrite just northwest of Cerro Seco, one of the post-collapse ring fracture domes, has
chemistry very comparable to Seco rhyolite lava. Thus, we interpret these pyroclastic deposits as the initial eruptions that even-

tually culminated with Cerro Seco dome.

INTRODUCTION

During the past several years, the geology of the Valles caldera
(Fig. 1) has been mapped at 1:24,000 scale as part of the joint
U.S. Geological Survey-New Mexico Bureau of Geology and
Mineral Resources State Map Program. Roughly 20 quadrangles
in the Jemez Mountains have been completed or are nearing com-
pletion. The resurgent dome of Valles caldera (Fig. 2) lies within
the Bland, Redondo Peak, Valle San Antonio, and Valle Toledo
quadrangles (Goff et al., 2005a, b, 2006; Gardner et al., 2006).
To complement recent geoscientific studies occurring within
Valles caldera and to provide background information for Day 2
of the 2007 New Mexico Geological Society field conference, we
briefly describe selected aspects of the geology, petrography, and
chemistry of resurgent dome rocks within the caldera.

BACKGROUND GEOLOGY

Valles caldera (Fig. 1) formed at 1.25 Ma during eruption of
approximately 300 km?® of the Tshirege Member, Bandelier Tuff
(Smith et al., 1970; Phillips et al., in press). The caldera collapsed
more or less at the same time as the Tshirege ignimbrites erupted.
As the caldera collapsed, landslide blocks (megabreccias) fell
off the caldera wall and were incorporated into the intracaldera
ignimbrites (e.g., Goff et al., 2005a). Drill hole and gravity data
show that the amount of collapse was significant (Nielson and
Hulen, 1984; Nowell, 1996). More than 1100 m of Tshirege
ignimbrite have been penetrated by wells in the Redondo Creek
graben of the Valles resurgent dome. After the caldera formed
several events began to occur almost simultaneously. First a lake

formed and sediments accumulated in the caldera depression.
Second, small-volume rhyolite tuffs and lavas erupted and are
interbedded with early caldera-fill sediments. Third, the resur-
gent dome began to rise due to continued magma pressure from
below (Smith and Bailey, 1968). The resurgent dome rose out
of a lake to a height of approximately 1000 m (1 km) above the
surrounding valleys. As it rose, more rhyolite eruptions occurred
and sediments on the resurgent dome were shed into the adjacent
caldera moat. Recent high precision **Ar/*Ar dating shows that
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FIGURE 1. Location map of the Valles caldera, New Mexico.
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FIGURE 2. Generalized geologic map of the resurgent dome of Valles caldera and surrounding caldera moat, compiled and simplified from the following
1:24,000 maps: Bland (Goff et al., 2005b), Jemez Springs (Kelley et al., 2003), Redondo Peak (Goff et al., 2005a), Seven Springs (Kelley et al., 2004),
Valle San Antonio (Goff et al., 2006), and Valle Toledo (Gardner et al., 2006). Numbers on map are keyed to sample locations in Table 1. Arrows on
landslides indicate direction of movement. Ball and bar on faults indicates down-thrown side. For color version of this map, see Plate 13 on page 143.

resurgence happened within a few tens of thousands of years of
caldera formation (Phillips, 2004; Phillips et al., in press). After
resurgence was complete or mostly complete, the caldera moat
began to fill with a series of rhyolite domes, flows, and pyroclas-
tic deposits (Valles Grande Member and El Cajete Series) erupted
from the caldera ring fracture zone. Subsequently, the moat filled
with additional fluvial deposits and lacustrine sequences (Smith
et al., 1970; Rogers et al., 1996). Hydrothermal activity began
as soon as the caldera formed and caused widespread alteration,
especially on and within the resurgent dome (Goff and Gardner,
1994). The present geothermal system (roughly 300°C) is merely
the youngest manifestation of a long-lived hydrothermal system
(WoldeGabriel and Goff, 1992).

ANALYTICAL METHODS

Major and trace elements for selected rock samples (Appendix
1) were analyzed using an automated Rigaku wavelength-disper-

sive X-ray fluorescence (XRF) spectrometer. Samples were first
crushed and homogenized in 5-10 g portions in a tungsten-car-
bide ballmill. Sample splits were heated at 110°C for 4 hrs, and
then allowed to equilibrate at ambient laboratory conditions for
12 hrs. To obtain the fusion disks, one-gram splits were mixed
with 9 g of lithium tetraborate flux and initially heated in a muffle
furnace for 45 min at 1100°C, followed by a second heating for 1
hr at 1150°C. Additional one-gram splits were heated at 1000°C
to obtain the Loss on Ignition (LOI) measurements to be used in
the data reduction program. Elemental concentrations were cal-
culated by comparing X-ray intensities for the samples to those
for 21 standards of known composition using “consensus values”
from Govindaraju (1994). Intensities were reduced using a funda-
mental parameters program for matrix corrections (Criss, 1979).

Additional 0.25 g splits of the rock powders were mixed in a
cocktail consisting of 2.0 ml HNO,, 3.5 ml HCl, and 1.5 ml HF,
heated in a microwave oven for about 10 min, and the result-
ing solution adjusted to 50 ml with deionized water. Analyses
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of selected trace metals were done by a combination of atomic
adsorption spectroscopies (graphite furnace, hydride generator,
inductively coupled plasma) and ion chromatography (Goff et al.,
2002; table 3). Besides providing some additional analyses for
trace elements not obtained by XRF methods, the wet chemical
analyses provide some checks on the precision of XRF values for
P.O,, Rb, and Cr.

275

RESURGENT DOME ROCKS
Tshirege Member of Bandelier Tuff

The Tshirege Member (commonly referred to as the upper
Bandelier Tuff; Fig. 3) is the dominant rock type on the Valles
resurgent dome and has a maximum thickness of 1155 m near
the head of Redondo Creek (Nielson and Hulen, 1984). The most
recent date on the Tshirege is 1.256 + 0.010 Ma (Phillips et al., in
press). Because it is so thick, most of the Tshirege is not exposed
and can only be studied from cuttings and cores (Hulen and Niel-
son, 1986; Hulen et al., 1991; Goff and Gardner, 1994; Warren et
al., 2007). Intracaldera Tshirege is a classic ash-flow tuff (ignim-
brite) that is welded to densely welded, usually displaying a near-
horizontal fabric due to vertical variations in welding, devitrifi-
cation, fiamme, and alteration. The color is usually gray to pale
tan and pink. Phenocrysts consist almost entirely of abundant
sanidine/anorthoclase and quartz. Sparse to trace clinopyroxene,
orthopyroxene, fayalite, opaque oxides, apatite, and chevkenite
are also found (Caress, 1996). Warren et al. (2007) provide aver-
age values for phenocrysts by subunit. The sanidine is often cha-
toyant blue, while the pyroxene and opaque minerals are usually
oxidized, making them difficult to see with a hand lens. Lithic
content is highly variable but most exposures of Tshirege will
reveal some lithics. The lithic population is mostly composed
of precaldera volcanic rocks and sandstones. Near megabreccia
blocks, lithics are generally abundant, some >0.2 m in length.
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Qls: Landslides
Qv QI: Moat Lacustrine Deposits

Moat 1.23to Qv: Moat rhyolite (Valle Grande
Vol a_ 0.04 Ma Member and El Cajete Series)
olicanism

Qdf: Intracaldera Debris Flows
""""""""""""" Qvs: Intracaldera
Fluvial/Lacustrine

Qrc: Redondo Creek Lavas
Qdct: Deer Canyon Tuffs
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Qb: Upper Bandelier Tuff
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FIGURE 3. Generalized stratigraphy of the resurgent dome and vicinity
adapted from Self et al. (1988), Phillips et al. (in press) and Chipera et al
(in press). Unit labels correspond to those in the legend of Figure 2. Goff
et al. (2006) provided a comprehensive correlation chart for all units
discussed in this report.

Because of substantial uplift during resurgence, intracaldera
Tshirege usually forms outcrops of broken plates, particularly
on the Redondo Peak block. Unbroken or unfaulted outcrops are
usually not continuous.

Where exposed, the top of the Tshirege is white from alteration
and weathering, and highly vesicular from presence of nonwelded
pumice. The vesicular top is usually less than 1 m thick. Where
stratigraphic context is preserved, a black vitrophyre usually
occurs about 1.5 to 3 m below the top of the unit. The vitrophyre
often has distinctly visible clinopyroxene, as well as sanidine and
quartz, and fiamme up to 20 cm long. However, many other vitro-
phyre horizons occur within the intracaldera Tshirege section.

Thin sections of the Tshirege show classic eutaxitic texture
consisting of glass shards, pumice, crystals, and lithics in a
banded to massive, welded to densely welded matrix (Ross and
Smith, 1961). The glass, if fresh, is commonly black to brown to
orange-brown. Both broken and unbroken crystals occur. Sani-
dine crystals are commonly full of melt inclusions. Unbroken
quartz is commonly embayed as if out of equilibrium. Pyroxene
crystals vary from <0.01 to 0.3 mm and opaque oxides are up to
0.05 mm. Crystal clots of feldspar-pyroxene are sparse. Devitri-
fied samples are much more common than vitric. When devitri-
fied, the pumice and glass contain tiny, low-birefringent miner-
als (primarily a silica phase and alkali feldspar) and vesicles are
filled with tridymite. Pyroxene and opaque oxides are difficult to
find, recognized mostly as pseudomorphs.

The intracaldera vitrophyre near the top of the Tshirege sec-
tion is noteworthy because it contains abundant clinopyroxene up
to 2.5 mm long and 0.5 mm wide. The clinopyroxene is yellow
green, slightly pleochroic, and partly reacted to brownish amor-
phous Fe-oxides and clay in most thin sections. The intracaldera
vitrophyre also contains clots of feldspar (some of which is pla-
gioclase) and pyroxene up to 2 mm long.

Chemically, the Tshirege Member exposed on the resurgent
dome is rhyolite to high-silica rhyolite (>75 wt-% SiO,) with 8 to
10 wt-% Na,O + K,O (Appendix 1; Fig. 4). Most samples have
relatively high contents of TiO, (>0.2 wt-%) and relatively high
Ba, Rb, Sr, and Zr. Warren et al. (2007) provide average values
for each subunit.

Outside the caldera, the Tshirege forms a sequence of recog-
nizable sheets or flow units (Smith and Bailey, 1966). The most
recent discussions of unit distinctions are summarized by Gardner
et al. (2001) and Lewis et al. (2002). Their uppermost Tshirege
unit is named Unit 4. Unit 4 has highly variable chemical, physi-
cal, and spatial properties, but has been generally broken into a
lower subunit (4L) and an upper subunit (4U) that correspond to
Units 4 and 5 of Warren et al. (1997) and generally with units E
and F of Rogers (1995). Gardner et al. (2001) pointed out that
subunit 4L sometimes has unusually high TiO, contents (>0.3 wt-
%) and that subunit 4U is generally clot-rich and moderately to
densely welded. The clots contain feldspar-pyroxene-amphibole.
At least some of the feldspar is plagioclase. TiO, contents of unit
4U are generally between 0.2 and 0.3 wt-%. Gardner et al. (2001)
also pointed out that Unit 4 ignimbrites generally contain higher
Ba, Rb, Sr, and Zr than lower flow units. We have also noticed
that thin sections of welded unit 4U contain pleochroic clinopy-
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FIGURE 4. Plot of total alkalis (Na,O + K,0) versus SiO, for rocks of the Valles caldera resurgent dome and vicinity. The left half of the diagram is a
Le Bas plot (Le Bas et al., 1986). All data are normalized LOI-free to 100% from analyses in Appendix 1. The fields enclose related groups of rocks.
Symbols: A = Paliza Canyon andesite, D = Tschicoma dacite, 4L, 4U = average Units 4L and 4U of the Upper Bandelier Tuff, triangles = veins, gouge,

breccias, and highly altered rocks.

roxene of similar size and optical properties to those found in the
uppermost intracaldera vitrophyre. Histograms in Warren et al.
(2007) illustrate and quantify these observations.

Doell et al. (1968) mentioned that the uppermost Bandelier
Tuff unit on the Pajarito Plateau (east of the caldera) is found
throughout the resurgent dome but they provided no data to sup-
port their statement. We have analyzed seven samples from an
80 m section of Tshirege Member exposed on the east margin
of Redondo Border (Appendix 1; Fig. 2, site 8). Significantly,
samples from the lower part of this section have TiO, greater than
0.3 wt-%, similar to Unit 4L, whereas samples from the upper
part of the section contain 0.2 to 0.3 wt-% TiO,, similar to Unit
4U (Fig. 5). For samples in this section, there also seems to be a
positive correlation from top to bottom of Ba and TiO,. The lower
samples have >500 ppm Ba, whereas the upper samples have 300
to 400 ppm Ba. Interestingly, the chemistry of these samples does
not precisely mirror the flow unit boundary that we observed in
the section. Judging from the chemistry of the other samples we
have taken, it appears that most of the Tshirege on the resurgent
dome belongs to Unit 4U, supporting the general statement of
Doell et al. (1968).

Warren et al. (2007) show that Tshirege units on the Paja-
rito Plateau correlate with surface and subsurface intracaldera
Tshirege units on the basis of petrography, mineral chemistry, and
rock chemistry. This is the first time that such precise correlations
have been compared among sections of Bandelier Tuff in the inte-
rior and exterior caldera environments and the resulting informa-
tion may prove useful for future study of eruption processes in
sequential magma batches from the Bandelier chamber.

Caldera collapse breccias (megabreccias)

Lipman (1976) defined caldera collapse breccias as large,
intact blocks that slide off the structural wall of a caldera and into
the caldera depression as the caldera is formed. They are incor-
porated into the intracaldera ash-flow tuffs (Fig. 3). According to
Lipman (1976, 2000), most of the collapse breccias occur near
the bottom of the ash-flow tuff sequence, indicating that most
of the sliding occurs near the beginning of the caldera-forming
eruptions. However, we have found significant quantities of col-
lapse breccias at the top of the ash flow sequence (e.g., Goff et
al., 2006). Some of the breccias form small hills above the sur-
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rounding tuff, suggesting they were never completely submerged
in the tuff. The types of rocks comprising the breccias are some-
what correlated with the type of basement underlying the caldera.
Thus, precaldera volcanic rocks are the most common collapse
breccias in the north and east of the resurgent dome, whereas
Permian rocks are most common in the south and west. Several
breccia types were chemically analyzed (Appendix 1).

Collapse breccias composed of Otowi Member of Bandelier
Tuff (commonly referred to as lower Bandelier Tuff) are massive
to ruptured (megabreccia breccias!). Most show some type of
hydrothermal alteration. Tuff within the breccias is usually char-
acterized by silicification of the matrix. Chatoyant sanidine and
quartz phenocrysts are prominent. Fiamme are well expressed,
especially on weathered surfaces. Rock colors are dominantly
brown to reddish brown but gray, pale blue, pale green and white
colors are common. A sample from a large Otowi collapse breccia
on the west side of the resurgent dome was dated at 1.68 Ma by
Phillips (2004, average of two dates). This age compares favor-
ably to those obtained on in-place Otowi Member samples from
outside the caldera (Izett and Obradovich, 1994; Spell et al.,
1996). Silicified Amalia Tuff (about 26 Ma), such as found as
cobbles in sediments of the Abiquiu Formation and the Chama-
El Rito member of the Tesuque Formation north of the caldera,
resembles silicified Otowi, but the latter tends to have smaller and
more abundant phenocrysts.

In thin section, samples of Otowi Member have typical eutax-
itic texture but show extensive silicification. Spherulitic shapes
are common in the collapsed pumice fragments. Pyroxene and
opaque oxides are completely destroyed. Small lithic fragments
are common. Chemically, these samples are high-silica rhyolites
but have higher SiO,, lower TiO, and Al O, and lower Ba, Sr, and
Zr than samples from Tshirege Units 4L and 4U (Appendix 1).
Total alkalis within samples of Otowi collapse breccia are roughly
similar to samples of the Tshirege Member (Fig. 4). Samples of
Otowi collapse breccia are more or less similar in chemistry to the
average composition of Otowi ash-flows in a stratigraphic section
from a well on the Pajarito Plateau (Gardner et al., 2001).

Precaldera volcanic rocks are well represented in the collapse
breccias (e.g., Goff et al., 2006). They consist of lava flows, flow
breccias, lithic tuffs, and debris flow deposits of predominantly
andesite to dacite from both the Paliza Canyon and Tschicoma
Formations (Bailey et al., 1969). Basalt and aphyric rhyolite
are occasionally found as blocks and cobbles in the debris flow
deposits. Low temperature alteration to illite-chlorite grade is
relatively common. Some blocks show silicification and pink to
red oxidation. Fractures are commonly injected with Bandelier
ignimbrite. Two samples were dated (Phillips, 2004): a dacite in
the gigantic collapse breccia 2.5 km northeast of Redondo Peak
(2.004 + 0.018 Ma, see Fig. 2) and a dacitic tuff in Redondo
Border (8.205 + 0.083 Ma, near site 44, Fig. 2). Most samples of
the intermediate composition rocks contain plagioclase, augite,
and hypersthene. The more evolved rocks may also contain horn-
blende and/or biotite. Potassium feldspar is uncommon. We did
not observe phenocrystic quartz in the dacites. Chemically, the
andesites and dacites cross the boundary between calc-alkaline
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FIGURE 5. Upper: Plots of elevation (feet) versus TiO, (wt-%) and Ba
(ppm) for a section of intracaldera Tshirege Member, Bandelier Tuff
exposed along Redondo Border (site 8, Fig. 2 and Appendix 1). Lower:
Plot of Ba (ppm) versus TiO, (wt-%) for rocks from the Tshirege section
at site 8 (Fig.2), compared with average Tshirege Unit 4L and Unit 4U
on the Pajarito Plateau.

and alkaline compositions on a La Bas plot (Fig. 4) and some
rocks could be called benmoreite and trachyte. This characteristic
was previously noted by WoldeGabriel et al. (2001) and Wolff et
al. (2005). In all other respects, chemical compositions of andes-
ites and dacites resemble those of Paliza Canyon and Tschicoma
formations presented by Gardner et al. (1986).

Tertiary to Permian clastic rocks are also quite common as
collapse breccias on the resurgent dome, mostly as massive to
bedded sandstone and shale. Quartz is the dominant detrital com-
ponent. Feldspar and hematite cement is most common in Perm-
ian samples. As a group, these older clastic rocks are silica-rich
and alkali-poor compared with all volcanic rocks (Fig. 4). We
found one zone containing relatively abundant, Paleozoic lime-
stone collapse breccias on the western side of the resurgent dome
but did not analyze them. Kues and Goff (2007) describe the
paleontology of several limestone blocks near Sulphur Springs.
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Early rhyolite eruptions

The first eruptions to follow collapse of Valles caldera were a
series of small-volume rhyolite tuffs and lavas named the Deer
Canyon Member (Fig. 4; Bailey et al., 1969). The most recent
“Ar/*Ar work yields a range of 1.229 to 1.283 Ma for the Deer
Canyon (Phillips et al., in press). The tuffs consist primarily of
lithic fall or hydromagmatic surge deposits. The surge depos-
its commonly contain accretionary lapilli. One Deer Canyon
ignimbrite that was previously interpreted as part of the younger
Valles Grande Member tuffs was erupted on the north flank of the
resurgent dome (Fig. 2). Generally speaking, Deer Canyon lavas
overlie these tuffs but at a few locations the lavas rest on Bande-
lier Tuff or are interbedded within caldera-fill sedimentary rocks
(described below). At several locations the lavas are sandwiched
between Deer Canyon tuffs. Lava flows erupted on the eastern side
of the resurgent dome are fine grained and nearly aphyric whereas
those on the western resurgent dome are extremely porphyritic,
suggesting there were two magma reservoirs that erupted at virtu-
ally the same time. On the eastern side of the resurgent dome we
found two locations where the rhyolite has pillow shapes indicat-
ing probable flow into a lake. Most Deer Canyon rocks, whether
tuffs or lavas, show moderate to severe, low-temperature hydro-
thermal alteration due in part to their eruption into the first Valles
caldera lake (Chipera et al., in press; 2007).

In thin section, Deer Canyon tuffs contain a mixture of ash,
pumice, crystal and lithic fragments. The ignimbrite has relict
eutaxitic texture. Lithic fragments are mostly precaldera volca-
nics, massive to spheroidal rhyolite, Bandelier Tuff, and what
appears to be chert. The crystals are quartz and feldspar, mostly
sanidine. No mafic phases remain. Silica, clay, zeolites and Fe-
oxides replace all the groundmass glass and fill in the voids (Chip-
eraetal., in press; 2007). Silica addition diminishes the total alkali
contents of these rocks in a fairly linear fashion (Appendix 1; Fig.
4). The ignimbrite we sampled contains 14,000 ppm sulfur, sug-
gesting that alunite is present as an alteration mineral because we
found no sulfides. The lavas contain microphenocrysts to pheno-
crysts of quartz and sanidine but no mafic phases other than occa-
sional opaque oxides. The groundmass is usually silicified, and
commonly banded and spherulitic, giving many rocks a cherty
appearance. Deer Canyon lavas are high-silica rhyolites, gener-
ally having more silica but approximately the same total alkali
content as the Tshirege Member of the Bandelier Tuff (Appendix
1; Fig. 4). Many Deer Canyon lavas contain exceptionally low
quantities of MgO and CaO (Appendix 1). Trace elements are
difficult to evaluate because of alteration, but the lavas appear
to have less Ba, Rb, Sr, and Zr than the Unit 4L and 4U Tshirege
rocks on the resurgent dome.

The Redondo Creek Member is the final early rhyolite erupted
on the resurgent dome and is dated by *°Ar/*Ar at 1.208 to 1.239
Ma (Phillips et al., in press). It consists of flows, flow breccias,
and block-and-ash flows of flow-banded, porphyritic lava con-
taining phenocrysts of plagioclase, biotite, clinopyroxene, and
minor sanidine. Samples are commonly perlitic to spherulitic.
It is the only rhyolite (lava or tuff) in Valles caldera that does
not contain quartz, which makes it supremely useful as a strati-

graphic marker. Redondo Creek lavas erupted from multiple
vents. One vent and associated lava flows occupy the intersection
of the major grabens cutting the resurgent dome. Other Redondo
Creek lavas erupted from at least three vents on the western side
of the resurgent dome and spilled into the western moat. These
flow complexes may be more than 200 m thick and butted up
against the western caldera wall. No doubt the thick Redondo
Creek flows acted as temporary dams to the drainage system in
the western moat. Redondo Creek lavas overlie Deer Canyon
rocks and are interbedded with caldera- fill sediments including
lacustrine deposits (described below) in the western moat (Kelley
et al., 2004) and other parts of the resurgent dome. Many of the
Redondo Creek lavas on the western resurgent dome display
extreme hydrothermal alteration (Charles et al., 1986).

In thin section, most Redondo Creek samples show partially
devitrified, banded to perlitic textures. Spherulites and tridymite
are common. Few samples are completely glassy. Feldspar and
biotite phenocrysts are abundant and distinct. Clinopyroxene
crystals are commonly altered. Highly altered samples show
extensive silicification and few if any phenocrysts are preserved.
Pyrite is common in such samples. Chemically, the Redondo
Creek lavas are rhyolite (not high-silica rhyolite) with slightly
less silica but similar total alkalis to most samples of the Tshirege
Member exposed on the resurgent dome (Fig. 4). Compared to
Deer Canyon lavas, the Redondo Creek samples generally con-
tain more total Fe oxides, more MgO, CaO and Ba but less Sr.

Early caldera-fill sedimentary rocks

Valles caldera contains a diverse assemblage of sedimentary
rocks deposited early in the caldera history. These consist of a
mixture of debris flows, talus breccias, landslides, fluvial, deltaic,
and lacustrine deposits. Many of these sediments were deposited
soon after the caldera formed but many were deposited as the
resurgent dome grew. The sediments directly overlie the Tshirege
Member and are interbedded with the Deer Canyon and Redondo
Creck Members. Because resurgent uplift was not everywhere
equal, the deposits are best preserved on the north and west flanks
of the resurgent dome. The 1:24,000 geologic maps (see Fig. 2)
break this unit into two parts; a dominantly coarse, debris flow
unit (Qdf, Fig. 3) and a fluvial and lacustrine unit (Qvs, e.g.,
Goff et al., 2005a). Geothermal wells in the Redondo Creek area
of the resurgent dome generally encounter a few tens of meters or
less of these deposits (Nielson and Hulen, 1984), whereas wells
on the northwestern resurgent dome intersect up to several hun-
dred meters of early sediments (Lambert and Epstein, 1980; Goff
and Gardner, 1994). For example, the debris flow unit is exposed
at 2715 m in the pass between the Cerro Seco and San Antonio
Mountain moat rhyolites (Fig. 1), indicating that the caldera-fill
sedimentary sequence was once dramatically thicker in the cal-
dera than we see today.

The matrix of debris flow deposits tends to be white to pale
green or yellow, pumice and ash-rich sandstone. Other sand-sized
fragments consist of chert, precaldera volcanics, probable Ter-
tiary and Permian sandstone, Precambrian granitoids, aphyric
rhyolite, Bandelier Tuff (both Otowi and Tshirege Members),
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quartz, feldspar, biotite, and rare pyroxene and hornblende. Sort-
ing is extremely poor and most fragments are angular to subangu-
lar. Cobbles and boulders in basal debris flows consist mostly of
precaldera volcanics, sandstones, granitoids, and silicified tuff of
the Otowi Member. Precaldera volcanics overwhelmingly domi-
nate the coarse clastic material in upper debris flows such as those
on the north side of the resurgent dome. During the mapping,
we also found at least two debris flow deposits composed almost
entirely of tuffs of the Tshirege Member.

Sandstones are white, gray, tan, or pale pink, massive to bedded
deposits. Some sandstones are pumice and ash-rich, while others
are not. Other fragments resemble those described above. Sorting
and fragment rounding are highly variable. Most sandstones are
moderately well sorted and have subangular to subrounded frag-
ments. Some sandstone beds show cross bedding, graded bed-
ding, groove features, and ripple marks.

Lacustrine rocks consist of white to gray, laminated to finely
bedded mudstone and siltstone. Layers are often only fractions of
a millimeter thick and superficially resemble varves. Crystal frag-
ments are sparse to rare and consist of quartz, feldspar (mostly
sanidine) and very rare pyroxene. Black organic smudges are
common. Small fossil leaves are rarely found. Diatom remains
are very common in the muddier lacustrine samples. Small faults
and fractures are also common. The matrix is often highly silici-
fied.

Most early caldera-fill sedimentary rocks show low-tempera-
ture hydrothermal alteration. X-ray diffraction analyses show
that much of the alteration is silica, clays, zeolites, alunite, and
Fe-oxides (Chipera et al., in press; 2007). Some samples show
green, Fe-rich illite and/or chlorite. Quartz, chalcedony, and
rarely calcite fill cavities and vugs, and cement grain boundaries.
Chemically, the sedimentary deposits tend to be silica-rich and
alkali-poor (Appendix 1; Fig. 4). One limonite-cemented sand-
stone contains over 16 wt-% Fe O,. Some samples contain high
sulfur, arsenic, and some heavy metals.

Veins, gouge, mineralization and other breccias

No description of the Valles resurgent dome would be com-
plete without mention of rocks influenced by hydrothermal pro-
cesses. Most major faults contain zones of veins, gouge, and
breccia composed mostly of quartz, chalcedony, opal, and small
quantities of sulfides, kaolin, and alunite. The breccias contain
recognizable fragments of silicified tuff. These rocks are often
brightly colored to orange, red, brown, and pink. The host rock
is usually Tshirege Member of Bandelier Tuff. Silica is enriched
and alkalis are depleted (Appendix 1; Fig. 4). Sulfur, arsenic, and
iron are frequently enriched. Small sinter deposits (silica-rich hot
spring deposits or geyserite) also remain on the resurgent dome
adjacent to or cut by faults, but are too small to show on Figure
2. The altered rocks and sinters are the surface expressions of
the hydrothermal system(s) that have circulated within the resur-
gent dome since caldera formation. The deeper parts of the Valles
hydrothermal system and associated alteration and mineraliza-
tion have been described in several papers (see Goff and Gardner,
1994, and papers cited therein).

Finally, we examined one disaggregation breccia (our term),
a mixture of dacite tuff and comminuted Tshirege Member, Ban-
delier Tuff. This rock occurs at the margin of a dacite tuff col-
lapse breccia block and the enclosing Tshirege. In thin section, it
is a mixture of angular dacite tuff fragments submerged in what
appears to be fluidized Bandelier Tuff, rich in crystals but poor in
pumice. Dacite comprises about 70% of the rock. Chemically, this
breccia plots between benmoreite and Bandelier Tuff (Appendix
1; Fig. 4). Breccias with such textures are common around the
margins of many collapse breccia blocks.

CERRO SECO RHYOLITE

Cerro Seco (Fig. 1) is one of the northern moat domes of the
Valles Grande Member (Bailey et al., 1969). Initial eruptions of
Cerro Seco magma produced ignimbrite, hydromagmatic surge
and associated sediments that formed a depositional apron in the
north caldera moat around the northern sector of Cerro Seco dome
(Goffetal., 2006). The pyroclastic phase was followed by growth
of the rhyolite dome. Pumice and lava consist of moderately por-
phyritic rhyolite containing phenocrysts of quartz, sanidine, bio-
tite, and very rare green hornblende. The sanidine is often chatoy-
ant. The hornblende can only be seen in thin sections. Because
of debate about the age and origin of the pyroclastic deposits,
we analyzed a rhyolite vitrophyre block from ignimbrite a few
hundred meters northwest of Cerro Seco to determine if a genetic
relation exists between dome and pyroclastic phases (Appendix
1; Fig. 4). Cerro Seco eruptive products are high-silica rhyolite
with total alkalis slightly higher than Deer Canyon or Redondo
Creek lavas. TiO,, Ba, and Sr contents are relatively low but Nb,
Rb, and Y are somewhat high. On a LOI-free basis, the chemistry
of the two Seco samples is very comparable, indicating that the
ignimbrite and dome originate from the same magma.

CONCLUSIONS

Ignimbrites of the Tshirege Member (upper Bandelier Tuff) in
Valles caldera are spatially extensive but significant stratigraphic
sections are exposed only along graben walls within the interior
of the resurgent dome. Petrographically and chemically, unal-
tered Tshirege exposed on the resurgent dome correlates with the
uppermost Tshirege outflow sheets described on the western Paja-
rito Plateau south of Los Alamos (units 4 and 5 of Warren et al.,
1997; units 4L and 4U of Gardner et al., 2001, and generally, units
E and F of Rogers, 1995). Caldera collapse breccia blocks consist
of various lithologies of Pennsylvanian to Quaternary age. They
are numerous, particularly in the central and eastern resurgent
dome (Fig. 2). The largest collapse breccia is about 2 km long
and 0.5 km wide. Early post-caldera rhyolites consist of various
tuffs, lava flows, and flow breccias erupted from numerous vents
on the resurgent dome. Most early rhyolite samples display mod-
erate to extensive low- to moderate-temperature hydrothermal
alteration. Early postcaldera sediments consist of debris flows,
talus breccias, fluvial and lacustrine deposits formed during ero-
sion of caldera walls, erosion of the uplifted resurgent dome, and
deposition into the earliest intracaldera lake(s). These sediments



COMMENTS ON ROCKS OF THE RESURGENT DOME AREA, VALLES CALDERA 361

are best preserved on the lower flanks and least uplifted portions
of the resurgent dome (Fig. 2). Alteration and veining are most
intense along faults where gouge and breccia provide conduits
for hydrothermal fluids. Altered rocks generally show silicifica-
tion and enhanced Fe, S, and As contents. Pyroclastic deposits
flanking the north side of Cerro Seco contain vitrophyre blocks
that chemically resemble lavas from Cerro Seco dome. Thus, we
believe these pyroclastic rocks and this dome formed from the
same magma batch at about the same time.
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COMMENTS ON ROCKS OF THE RESURGENT DOME AREA, VALLES CALDERA
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PLATE 13: GEOLOGIC MAP OF THE RESURGENT DOME OF THE VALLES

CALDERA AND SURROUNDING CALDERA MOAT

Legend
Qa  Alluvium, colluvium, terrace
Qls Landslides

BB Moat lacustrine deposits

&l Moat rhyoiite

J@dR Early debris flow
Qus Early fluvialllacustrine

[[@re Redondo Creek lava

848 Deer Canyon lava

Qdct Deer Canyon tuff

- Megabreccia, undivided

- Upper Bandelier Tuff

Pu Permian, undivided

S8 New Mexico Grovocical Sociery Guinesook, 2007

Generalized geologic map of the resurgent dome of Valles caldera and surrounding caldera moat, compiled and simplified from the following 1:24,000 maps: Bland (Goff et al., 2005b),
Jemez Springs (Kelley et al., 2003), Redondo Peak (Goft et al., 2005a), Seven Springs (Kelley et al., 2004), Valle San Antonio (Goff et al., 2006), and Valle Toledo (Gardner et al., 2006).
Numbers on map are keyed to sample locations in Table 1. Arrows on landslides indicate direction of movement. Ball and bar on faults indicates down-thrown side. See article by Goff et
al., p. 354



