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GEOLOGY AND MINERAL RESOURCES  
OF THE LAUGHLIN PEAK MINING DISTRICT,  

COLFAX COUNTY, NEW MEXICO

VIRGINIA T. McLEMORE
New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, Socorro, NM, ginger@nmbg.nmt.edu

ABSTRACT—The Laughlin Peak district in the Laughlin Peak-Chico Hills igneous complex is in the southern portion of 
the younger Raton-Clayton volcanic field, southeast of Raton in northeastern New Mexico, along the Jemez Lineament, and 
is part of the North American Cordilleran alkaline-igneous belt that extends from Alaska and British Columbia southward 
into New Mexico and eastern Mexico. The Laughlin Peak-Chico Hills complex was emplaced just before or at the begin-
ning of Rio Grande rift extension (22–37 Ma). Host rocks in the Laughlin Peak district are alkaline, predominantly ferroan, 
predominantly metaluminous to peralkaline and plot as A-type granites, WPG (within-plate granites), and active continental 
margins zone. The igneous rocks exhibit typical light rare earth elements (REE) enriched chondrite-normalized REE patterns 
of alkaline rocks with no europium anomaly. The alkaline igneous rocks in the district are similar in composition and texture 
to igneous rocks found in two other REE districts in the North American Cordilleran alkaline-igneous belt (also known as the 
Great Plains Margin or GPM) in New Mexico, the Gallinas and Cornudas Mountains. Although there has been no mineral 
production from the Laughlin Peak district, three types of mineral deposits have been identified: (1) carbonatites, (2) breccia 
pipe deposits, and (3) Th-REE hydrothermal veins. Since 1987, only minor exploration of these deposits occurred because of 
low commodity prices and environmental concerns. However, as the current demand for critical commodities like REE has 
increased, new exploration programs have encouraged additional research on the geology of these deposits. Thorium, REE and 
possibly gold are potential commodities in the Laughlin Peak district, but additional drilling is required to fully understand the 
mineral resource potential. Detailed studies on the mineralogy and paragenesis also are required in the Laughlin Peak district 
and should be completed before advanced exploration. These studies will greatly enhance exploration efforts. The diversity of 
igneous rocks and associated mineral deposits along the boundary of the Great Plains with the Southern Rocky Mountain and 
Basin and Range provinces suggests that this region is characterized by multiple pulses of highly fractionated and differentiated 
magmas. In the Laughlin Peak-Chico Hills complex, two different chemical trends of phonolite are found that could be a result 
of differences in fractionation. Both upper mantle and lower crustal source rocks may be involved, although in the Laughlin 
Peak-Chico Hills complex, a lower crustal source with possible mixing of upper crustal rocks is suggested by geochemical 
data. Deep-seated fracture systems or crustal lineaments, such as the Jemez Lineament, apparently channeled the magmas and 
hydrothermal fluids. Once magmas and metal-rich fluids reached shallow levels, the distribution and style of these intrusions, 
as well as the resulting associated mineral deposits, were controlled by local structures and host rock compositions.

INTRODUCTION

The North American Cordilleran alkaline-igneous belt  
extends from Alaska and British Columbia southward into  
New Mexico and eastern Mexico (Fig. 1). Along this belt, 
gold, fluorine, zirconium, rare earth elements (REE), and other  
elements have been found and exploited from several types 
of mineral deposits. In New Mexico, the belt extends from  
the Sangre de Cristo Mountains, southward to the Cornudas  
Mountains, in the northern Trans-Pecos alkaline-igneous  
belt (Fig. 2). North and McLemore (1986) and McLemore  
(1996, 2015a, b) summarized the deposits in this belt and  
called them Great Plains Margin (GPM) deposits. Significant  
gold production in New Mexico has come from some depos-
its within this belt. Alternative classifications by other  
workers include Au-Ag-Te veins (Cox and Bagby, 1986; Bliss  
et al., 1992; Kelley et al., 1998), alkalic-gold or alkaline- 
igneous related gold deposits (Fulp and Woodward, 1991; 
Thompson, 1991a, b; Bonham, 1988; Mutschler et al., 1985, 
1991; Richards, 1995; Jensen and Barton, 2000), porphyry  
gold deposits (Rytuba and Cox, 1991) and the Rocky Mountain 
Gold Province. 

Since 1987, only minor exploration and development of these 
deposits occurred because of low commodity prices and envi-
ronmental concerns. However, as the current demand for critical 
commodities like REE and tellurium has increased, new explo-
ration programs elsewhere in the North American Cordilleran 
alkaline-igneous belt have encouraged additional research on the 
geology of these deposits. The origin of these deposits is still not 
well understood, but compilation of past data, including geologic 
mapping, age dates, and isotopic and chemical analyses of igne-
ous rocks and associated mineral deposits, allows for a better 
understanding of the characterization and origin of these deposits. 

The Laughlin Peak district is in the Laughlin Peak-Chico Hills 
igneous complex southeast of Raton in northeastern New Mexico 
(Fig. 2). The older Laughlin Peak-Chico Hills igneous complex 
(22–37 Ma) is overprinted by the younger Raton-Clayton volca-
nic field (3.5–9 Ma; Staatz, 1985; Stroud, 1997), and both igne-
ous fields lie along the Jemez Lineament. 

A number of previous workers have examined the geology 
and mineral resources of the Laughlin Peak district (Staatz, 1985, 
1986, 1987; Schreiner, 1991; Potter, 1988), but a re-examination 
of the Laughlin Peak district is warranted in light of today’s 
potential economic importance of REE and gold. Therefore, the 
purposes of this report are to (1) summarize the previous work 
and exploration history of the Laughlin Peak district; (2) describe 
the geology, geochemistry, and mineral deposits in the district; 
(3) summarize the mineral resource potential of the district; and 

Appendix data for this paper can be accessed at:
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(4) summarize the origin of the igneous rocks and mineral depos-
its of the district.

PREVIOUS WORK, EXPLORATION HISTORY, AND 
METHODS OF STUDY

The Laughlin Peak-Chico Hills area was first mapped by 
Wood et al. (1953) as part of oil and gas investigations in north-
eastern New Mexico. Some of the early studies of the igneous 
rocks were by Collins (1949) and Stobbe (1949). Tschanz (1958) 
was the first to report the Th-REE veins and McLemore (1983) 
examined the uranium and thorium potential in the area. Staatz 
(1985, 1986, 1987) conducted geologic mapping and described 
the Th-REE veins and Scott and Pillmore (1993) presented a geo-
logic map of the Raton 30 by 60 degree quadrangle. McLemore 
et al. (1988a, b) summarized the REE potential and North and 
McLemore (1986, 1988) and McLemore (2001) examined the 
gold potential in the district. Potter (1988, 2007) studied the geo-
chemistry of the igneous rocks. Schreiner (1991) examined the 
mineral resource potential of the carbonatites, Th-REE veins, and 
breccia pipes. Geochronology has been part of regional studies 

by Stormer (1972), Staatz (1985, 1986, 1987), Scott et al. (1990) 
and Stroud (1997).

There has been no mineral production from the Laughlin 
Peak district, except for some quarried rock for construction pur-
poses, although numerous shallow pits, trenches, and shafts were 
dug since the 1950s exploring for predominantly uranium and  
thorium. A few shallow holes were drilled in the 1950s for ura-
nium and thorium (Table 1). In 1986, two holes were drilled in 
breccia pipes to determine the potential for REE and gold miner-
alization in the western portion of the district (Table 1) by James 
Hennigan in cooperation with the New Mexico Bureau of Mines 
and Mineral Resources (now New Mexico Bureau of Geology 
and Mineral Resources, NMBGMR). Some of these data are  
contained in this report. Since then several mining and exploration  
companies have briefly examined the area for REE and gold 
potential, but there has been no additional drilling. Most of the 
area is privately owned, although some areas are state and federal 
mineral ownership.

Data used in this report have been compiled from a literature 
review, field examination, and NMBGMR unpublished data, 
including mineralogy and geochemistry of the igneous rocks  
and the mineral deposits. Chemical compositions of igne-
ous rocks and mineral deposits in the Laughlin Peak district 
are in Appendix 1 and were obtained from Staatz (1985, 1986, 
1987), Potter (1988), and Schreiner (1991). Analytical meth-
ods are described in these cited reports. The chemical data were  
plotted on various geochemical and tectonic diagrams (Shand, 
1943; Irvine and Baragar, 1971; Pearce et al., 1984; Whalen et al., 
1987; Frost et al., 2001; Schandl and Gorton, 2002), as described 
below. A variety of nomenclatures for the igneous rocks in 
these districts were used in previous studies, because the rocks  
typically are porphyritic in a fine-grained matrix and include  
shallow intrusions as well as extrusive volcanic rocks. The 
nomenclature of igneous rocks in this report mostly con-
forms to the International classification proposed by LeMaitre  
(1989), where the primary classification of igneous rocks is  
based upon mineralogy and, if too fine-grained to determine  
mineralogy, by the use of whole-rock geochemical analyses  
using the TAS (Cox et al., 1979) and R1-R2 (de la Roche et al., 
1980) diagrams. 

Published and unpublished data on existing prospects within 
the Laughlin Peak district were inventoried and compiled in the 
New Mexico Mines Database (Appendix 2; McLemore et al., 
2005a, b). Chemical analyses of carbonatites are in Appendix 3 
and of veins and breccia pipes in Appendix 4 (from Staatz, 1985; 
Schreiner, 1991; NMBGMR unpublished data).

FIGURE 1. Extent of the North American Cordilleran alkaline-igneous 
belt (Woolley, 1987; Mutschler et al., 1991; McLemore, 1996). The 
Laughlin Peak district is between the Ortiz Belt and Cripple Creek.

Latitude 
(degrees)

Longitude 
(degrees)

Approximate 
date of drilling Depth (m)

36.6063623 104.2270253 1950s ?
36.6024581 104.2197842 1986 35
36.6019016 104.2187249 1986 76

TABLE 1. Locations of drill holes for uranium, thorium, REE, and gold 
exploration in the Laughlin Peak district, shown in Figure 3. Coordi-
nates are NAD27.
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FIGURE 2. Mining districts related to the North American Cordilleran alkaline-igneous belt (GPM or Great Plains Margin deposits), lineaments, Rio 
Grande rift, calderas, and other Eocene-Miocene mining districts in New Mexico (Chapin et al., 1978, 2004; McLemore, 1996, 2001; Sims et al., 2002; 
McLemore et al., 2005a, b). Descriptions of GPM districts, including mineral production, are summarized in McLemore (2015b).
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REGIONAL GEOLOGY

Jemez Lineament

Deep crustal structures play critical roles in controlling  
large-scale emplacement of magmas, crustal fluid flow and the 
formation of mineral deposits (Chernicoff et al., 2002; Crafford  
and Grauch, 2002; Woolley and Bailey, 2012). The Jemez  
Lineament (Fig. 2) is one of these regional crustal struc-
tures that was originally defined as an alignment of Tertiary- 
Quaternary volcanic centers and northeast-trending faults (Mayo, 
1958; Aldrich, 1986; Chamberlin, 2007). A better definition of 
the Jemez Lineament is a northeast-trending zone character-
ized by active uplift (Nereson et al., 2013), low seismic velocity 
in the mantle (Magnani et al., 2004, 2005; Chamberlin, 2007), 
and repeated igneous activity and reactivation along faults that 
extends from Springerville, Arizona through the Jemez caldera 
and into the Raton-Clayton volcanic field (Fig. 2). The lineament 
also coincides with the southern edge of a 300-km wide transition 
zone between the Yavapai (1.8–1.7 Ga) and Mazatzal (1.7–1.6 
Ga) Proterozoic provinces (Magnani et al., 2004, 2005). 

Raton-Clayton volcanic field

The Raton-Clayton volcanic field is along the northeast-
ernmost extension of the Jemez Lineament in northeastern  
New Mexico along the boundary between the Great Plains and 
Sangre de Cristo Mountains and represents the easternmost 
extent of Neogene-Quaternary volcanic activity in New Mexico. 
The field consists predominantly of alkali olivine basalt flows 
and cones, and lesser amounts of basaltic to feldspathoidal flows 
and cones, andesite to dacite domes, and olivine nephelinite to 
tridymite-bearing hornblende dacite and was emplaced during 
late Rio Grande rifting (Jones et al., 1974; Stormer, 1972, Phelps 
et al., 1983; Scott et al., 1990; Stroud, 1997). Three phases of 
eruption occurred (Stroud, 1997): Raton (9.0–7.3 and 5.6–3.6 
Ma), Clayton (3.0–2.2 Ma) and Capulin (1.68 Ma–56 ka). Geo-
chemical and isotopic compositions suggest a lithospheric mantle 
source (Phelps et al., 1983; Zhu, 1995).

GEOLOGY OF THE  
LAUGHLIN PEAK-CHICO HILLS DISTRICT

The Laughlin Peak-Chico Hills igneous complex forms most 
of the district, is older than the Raton-Clayton volcanic field, and 
was emplaced just before or at the beginning of Rio Grande rift 
extension at 22–37 Ma. The Laughlin Peak-Chico Hills igneous 
complex is dominated by the Chico Sill Complex, which has 
domed and intruded Cretaceous sedimentary rocks (Wood et al., 
1953; Scott et al., 1990). The Laughlin Peak-Chico Hills igneous 
complex consists of a variety of alkaline extrusive (trachyandes-
ite (32.3 ±1.5, K/Ar), basalt, trachybasalt, rhyodacite) and intru-
sive lithologies, including trachyte (36.7 ±1.3 Ma, K/Ar, Staatz, 
1985), trachyphonolite, trachyandesite, phonotephrite (25.3 ±0.9 
Ma, K/Ar, Staatz, 1986), Chico Phonolite (25.80 ±0.88 Ma, K/Ar, 
Staatz, 1985; 22.8 ±0.23 40Ar/39Ar, Stroud, 1997), lamprophyre 

(24.06 ±1.01 Ma, K/Ar; Staatz, 1986), and carbonatite (Fig. 3). 
The Chico Phonolite occurs in large sills and dikes as much as 1 
m thick. Many of the volcanic and intrusive rocks have a porphy-
ritic texture, suggesting emplacement near or at the surface.

Carbonatites are carbonate-rich rocks of apparent magmatic 
derivation and typically contain REE, U, Th, Nb, Ta, Zr, Hf, Fe, 
Ti, V, Cu, apatite, vermiculite, and barite (Woolley and Kempe, 
1989; Verplanck et al., 2014). Some of the world’s largest eco-
nomic REE deposits are associated with carbonatites, such as 
Mountain Pass, California and Bayan Obo, Inner Mongolia, 
China (Verplanck et al., 2014). 

GEOCHEMISTRY OF IGNEOUS ROCKS

Chemical analyses of some Laughlin Peak-Chico Hills igneous 
rocks are in Appendix 1. The igneous rocks are alkaline (Fig. 4A), 
predominantly ferroan, alkali-calcic to alkali (Frost et al., 2001), 
metaluminous to peralkaline (Fig. 4B) and plot as A-type granites 
(Whalen et al., 1987), WPG (within-plate granites; Pearce et al., 
1984), and active continental margins zone (Schandl and Gorton, 
2002). Two chemical trends of phonolite are observed; high Zr 
and low Zr (Fig. 4C; Potter, 1988). The high Zr phonolites are per-
alkaline and have high concentrations of Zr, Y, U, Th and Rb and 
low Mg numbers, Cr, and Ba. The igneous rocks exhibit typical 
light REE-enriched chondrite-normalized REE patterns of alka-
line rocks with no europium anomaly (Fig. 4D). Initial strontium 
isotope compositions (0.7042–0.7053; Potter, 2007) are similar 
to other GPM districts (McLemore, 2015a, b), and slightly higher 
than initial strontium isotope compositions of the younger rocks 
in the Raton-Clayton volcanic field, implying a different source 
region (0.7028–0.7050; Jones et al., 1974; Zhu, 1995). Epsilon 
Nd values are in the range of 2.1 to -1.5 (143Nd/144Nd between 
0.51275 and 0.51256; Potter, 2007). Collectively, the geochemi-
cal and isotopic data suggest the Laughlin Peak-Chico Hills rocks 
are derived from a lower crustal source with possible mixing of 
upper crustal rocks. 

DESCRIPTION OF MINERAL DEPOSITS

Three types of mineral deposits have been identified, as 
defined by mineralogy and chemistry: (1) carbonatites, (2) brec-
cia pipe deposits, and (3) Th-REE hydrothermal veins (Staatz, 
1985, 1986, 1987; Schreiner, 1991). Table 2 summarizes the 
mineralogy of the carbonatites, veins, and breccia pipes for each 
deposit type and Figure 3 shows their locations.

Carbonatite

Radioactive carbonatite dikes intrude an Oligocene pho-
notephrite (Staatz, 1985; Schreiner, 1991) and have the chemical 
composition of predominantly ferruginous calciocarbonatite (Fig. 
5; after Woolley and Kempe, 1989; Gittins and Harmer, 1997), 
with some calciocarbonatite (also known as calcite carbonatite 
or sövite) and magnesiocarbonatite (also known as dolomite car-
bonatite or beforsite). The carbonatites are poorly exposed and 
range in size from 12 m to 1219 m long and less than 1 m wide  
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FIGURE 3. Location maps of the Laughlin Peak district, Colfax County,  
New Mexico (simplified from Staatz, 1986, 1987; Schreiner, 1991). Prospects and 
drill holes are summarized in Appendix 2 and Table 1. A. Regional. B. Northern 
portion of the district.

and consist of predominantly calcite, dolomite, 
barite, with trace amounts of apatite, goyazite 
(including REE-rich end member florencite to 
calcium-rich end member crandallite), bastnaesite, 
monazite, pyrite, and quartz (Table 2; Schreiner, 
1991; NMBGMR unpublished data). The Laughlin 
Peak carbonatites contain <1.6% total REE (Fig. 6; 
Appendix 3).

TABLE 2. Selected minerals found in the carbonatites, 
veins, and breccias in the Laughlin Peak district (Staatz, 
1985; Schreiner, 1991; NMBGMR unpublished data).

Mineral Chemical formula C
ar

bo
nt

ite
s

T
h-

R
E

E
 v

ei
ns

B
re

cc
ia

 p
ip

es

quartz SiO2 ? X X
calcite CaCO3 X X X
dolomite CaMg(CO3)2 X
magnetite Fe3O4 X X X
barite BaSO4 X X X
apatite Ca10(PO4)6(OH,F,Cl)2 X
goyazite (Sr,Ca,Ce)Al3(PO4)2(OH)5 X
florencite (La,Ce)Al3(PO4)2(OH)6 X
crandallite CaAl3(PO4)2(OH)5 · H2O X
bastnaesite [Ce, La, (CO3)]F X
ancylite SrCe(CO3)2(OH) · (H2O) ?
monazite (Sm,Gd,Ce,Th,Ca)(PO4) X
pyrite FeS2 X X X
gold Au X X
fluorite CaF2 ? X X
niobium rutile TiO2 X X
xenotime (Yb,Y,Er)PO4 X ?
churchite YPO4·2(H2O) ?
brockite (Ca,Th,Ce)PO4·H2O) X
zircon ZrSiO4 X X X

A

B

Th-REE veins

The radioactive Th-REE veins cut Creta-
ceous sedimentary rocks and Tertiary volcanic 
flows, dikes and sills, strike predominantly west 
to northwest with steep north or south dips, and 
are less than 600 m long and less than 1 m wide  
(Fig. 3). The veins are linear zones of brecciated 
and fractured host rock. Crandallite, xenotime,  
thorite, and brookite are the predominant REE 
minerals in a gangue of quartz, calcite, feldspar, 
and trace amounts of barite, fluorite, rutile, zircon,  
pyrite, magnetite, and iron and manganese  
oxides (Table 2; Staatz, 1985; Schreiner, 1991). 
The veins contain <1.2% total REE and <165 ppb 
Au and exhibit light REE enriched chondrite-nor-
malized REE patterns (Schreiner, 1991; NMBGMR 
unpublished data). The veins also contain as 
much as 2200 ppm F, 2000 ppm Ba, 532 ppm Nb,  
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BA

172 ppm U, 75 ppm Ta, and 68 ppm Mo, with low or no Te 
(Appendix 4). The veins exhibit light REE enriched chondrite-
normalized REE patterns (Fig. 7). 

Breccia Pipe Deposits

The radioactive breccia pipes are intrusive (Fig. 3) and con-
sist of various iron and manganese oxide-stained, angular to 
subrounded rock fragments (less than 0.6 m diameter) in a 
fine-grained siliceous and carbonate matrix of quartz and feld-
spar. The breccia pipes are circular to oval shaped and six of the 

D

FIGURE 4A. A. TAS (total alkali-silica) in percent, after Cox et al. (1979). B. A/CNK-A/NK, after Shand (1943). C. Zr-La plot in ppm. D. Chondrite-
normalized (Nakamura, 1974) REE plots for the igneous rocks from the Laughlin Peak district (data in Appendix 1; Staatz, 1986; Potter, 1988; Sch-
reiner, 1991; NMBGMR unpublished data). Black squares are Low Zr Trend basalts; diamonds are Low Zr Trend lamprophyres; circles are Low Zr 
Trend phonolite, rhyodacite, and trachyte; and triangles are High Zr Trend phonolites. 

C

largest pipes range in size from 46 to 366 m (Fig. 3); smaller 
pipes have been mapped. Quartz, feldspar, and clay are the pre-
dominant minerals with trace amounts of gold, niobium rutile (?), 
pyrite, zircon, xenotime or churchite (Table 2; Schreiner, 1991; 
NMBGMR unpublished data). The total REE is less than 3017 
ppm (Fig. 7). The breccia pipes also contain as much as 5900 
ppm F, 9050 ppm Ba, 535 ppm Nb, 54 ppm U and 82 ppb Au 
(Appendix 4; Schreiner, 1991; NMBGMR unpublished data).

Core from the holes drilled in 1986 consists of predominantly 
grayish breccia cut by feldspar and iron oxide veinlets. Pyrite and 
marcasite were disseminated in portions of the core from drill 
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FIGURE 6. Chondrite-normalized (Nakamura, 1974) REE plots of carbonatites from Laughlin Peak. Data are from Schreiner (1991) and NMBGMR 
unpublished data.

hole 2. Only low concentrations of gold, silver, 
and tellurium were found in the core samples 
(Appendix 2).

OUTLOOK FOR MINERAL RESOURCE 
POTENTIAL IN THE FUTURE 

There is thorium, REE and possibly gold 
potential in the Laughlin Peak district, but  
additional drilling is required to more completely 
understand the mineral resource potential. The 
best potential is in the carbonatites and Th-REE 
veins. However, the Laughlin Peak district is not 
as faulted as other GPM districts in New Mexico 
and this could prevent large deposits from form-
ing. Detailed studies on the mineralogy, geo-
chronology, and paragenesis are still required in  
the Laughlin Peak district and should be com-
pleted before advanced exploration. Such studies  
will greatly enhance exploration efforts. Any 
sampling should include multi-element analyses, 
especially gold, thorium, REE, niobium, tung-
sten, and tellurium.FIGURE 5. Chemical classification of Laughlin Peak carbonatites, in percent (after 

Woolley and Kempe, 1989 and Gittins and Harmer, 1997). Data compiled in Appendix 3.
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FIGURE 7. Chondrite-normalized (Nakamura, 1974) REE plots of veins (squares), breccia pipes (triangles), and altered rocks (diamonds) from the 
Laughlin Peak district. A. Data from Schreiner (1991). B. Data from NMBGMR unpublished files (Appendix 4). 

A

B
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The diversity of igneous rocks and associated mineral deposits 
along the boundary of the Great Plains with the Southern Rocky 
Mountain and Basin and Range provinces suggests that this 
region is characterized by multiple pulses of highly fractionated 
and differentiated magmas (Fig. 8). In the Laughlin Peak-Chico 
Hills igneous complex, two different chemical trends of phono-
lite are found that could be a result of differences in fractionation 
of a single magma or emplacement from two separate pulses  
of magmas. Both upper mantle and lower crustal source rocks 
may be involved, although in the Laughlin Peak-Chico Hills 

DISCUSSION AND CONCLUSIONS

Some of the youngest ages of igneous rocks associated 
with New Mexico GPM deposits (22–24 Ma) are in northern 
New Mexico (Questa, Red River, and Laughlin Peak districts; 
McLemore, 2015a, b). Alkaline igneous rocks in the Laughlin 
Peak district are similar in composition and texture to igneous 
rocks in two other REE districts in the GPM belt, the Gallinas 
and Cornudas Mountains (Fig. 2; McLemore, 2015a, b), and  
are ferroan, alkali-calcic to alkali (according to Frost et al., 

FIGURE 8. Schematic model for formation of Great Plains Margin deposits  
(modified from Richards, 1995).

2001). However, igneous rocks associated with the 
other GPM districts, which contain predominantly 
gold, copper, and iron deposits are predominantly 
ferroan to magnesian, calc-alkalic to alkali-calcic to 
alkalic (McLemore, 2015a, b). Geochemically, the  
Laughlin Peak rocks plot as WPG (within-plate gran-
ites), according to Pearce et al. (1984), and active 
continental margins, according to Schandl and Gorton 
(2002). In contrast, igneous rocks associated with the 
Colorado Mineral Belt (including Cripple Creek dis-
trict), also part of the North American Cordilleran 
alkaline-igneous belt, are magnesian, alkali-calcic  
to calc-alkalic and metaluminous to peraluminous 
(Anthony, 2005). Strontium and Nd isotope composi-
tions of igneous rocks are similar with other GPM 
districts (McLemore, 2014; 2015a, b). The similar 
compositions of GPM igneous rocks suggest that the 
magmas had a common origin and were produced 
from similar source regions. Small differences in 
geochemical composition between igneous rocks are 
probably related to subtle differences in fractional 
crystallization, especially of minerals such as garnet, 
zircon, and apatite, and also possible water-rock 
interactions that could account for variations in K2O, 
Na2O, barium, rubidium, and strontium. 

In New Mexico, the style of mineralization differs 
from that found in Colorado. Tellurium is common in 
many of the Colorado districts, but most GPM dis-
tricts in New Mexico have elevated concentrations 
of tungsten, with only trace amounts or no tellurium 
(Kelley and Ludington, 2002; McLemore, 2013; 
compilation by the author). Tellurium and tungsten 
in most Laughlin Peak samples are below detection 
limits (Appendix 3, 4). However, tellurium analy-
ses of samples from New Mexico GPM districts are 
limited and therefore, tellurium could be present in 
specific mineral zones within New Mexico districts. 
More detailed mineralogical and chemical analyses 
are required. Most GPM districts in New Mexico 
contain iron skarns (McLemore, 2015a, b), but there 
are none reported in the Laughlin Peak district. Fluo-
rite veins are only significant in the Gallinas district 
where fluorite was produced, but fluorite is present 
only in small quantities in the Laughlin Peak district 
and in most GPM and Colorado districts (Kelley and 
Ludington, 2002; McLemore, 2015a, b).
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other deposits at Cripple Creek, Colorado and elsewhere where a 
magmatic origin is favored (Maynard et al., 1989, 1990; Kelley 
et al., 1998; Kelley and Ludington, 2002)..
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