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Thin section showing oxidation and later partial
reduction of the iron in a glassy welded tuff. lddings
(1899, pl. 50, fig. B) shows the same section in black

and white. His belief that this was all originally red
and that bleaching took place after deposition is
confirmed by the presence of very fine grained
microlites of magnetite in the light-colored area. From
Yellowstone National Park.

EOLOGICAL SURVEY PROFESSIONAL PAPER 366 FRONTISPIECE
The dull brown cores of the large shards near the
middle of this photomicrograph of glassy welded tuff
represent the original character of the glass, and the
red areas are a result of oxidation. The horizontal
alinement of shards indicates marked compaction.
USNM specimen 38771 from Rio Blanco, 10 miles
north-northwest of Guadalajara, Mexico.
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FOREWORD
b y

Robert L. Smith

Twenty years have passed since publication of U.S.
Geological Survey Professional Papers 366, Ash-flow
tuffs: Their origin, geologic relations and identifica-
tion, by C. S. Ross and R. L. Smith (1961), and
354-F, Zones and zonal variations in ash-flows, by R.
L. Smith (1960). As these papers are now being re-
published, perhaps a few words are appropriate to
clarify their historical evolution and to view them in
the context of the present time.

Clarence Ross and I began an intensive general
study of microscopic and field characteristics of
"welded tuffs" in 1948, in the hope that such a study
would aid our interpretation of the Bandelier Tuff,
Jemez Mountains, New Mexico. The study led to a
general overview which became Professional Paper
366. Professional Paper 366 was written during the
late 1940's and early 1950's. The paper was virtually
complete in its present form in 1954 and should have
been published in 1955 or 1956. For various reasons
the paper with but minor updates to about 1956, did
not go to press until 1960, and we feared that it
would be obsolete before it was published. Moreover,
the first printing of PP366 in 1960 was contracted
out by the Government Printing Office and the repro-
duction of the plates was unacceptable and reprinting
was required. This reprinting by GPO delayed the
publication date until 1961 after the publication of
PP 354-F and my review paper "Ash Flows" (1960).
For the specialist in welded tuffs Professional Paper
366 probably was obsolete when published, but for-
tunately specialists were few and the paper has long
been popular and useful to students, teachers and to
geologists not specialized in the geology of silicic vol-
canic rocks. Professional Paper 354-F was conceived
during the mid-1950's, written in 1958, and pub-
lished in June of 1960, the same month that "Ash
Flows" appeared in the Geological Society of Amer-
ica Bulletin. This latter paper was written in 1959
and, although it was labeled a review paper, it ac-
tually represented a five-year conceptual advance
beyond Professional Paper 366, and contained much
additional data. However, the main value of Profes-
sional Paper 366 is in the many photomicrographs
depicting variations in ash-flow tuffs, and in the his-
torical summary that attempts to outline the evolu-
tion of thought leading to modern concepts. These
sections are probably of most value to students and
have not yet been superseded.

Professional Paper 354-F introduces the concept of
the "cooling unit" and provides some genetic and
descriptive order to the many lithological variations
found in welded tuffs. The cooling unit was con-
ceived by the author as a device to provide genetic
meaning to map units, as well as an aid to mapping,
and had its origin in the very complex units of the
Bandelier Tuff. The fact that no Bandelier-type units
are depicted in Professional Paper 354-F, has puzzled
several observant students of these rocks, and on
several occasions I have been asked "why?"

Professional Paper 354-F deals primarily with zonal
variations in what I termed "simple cooling units"
and although concepts of more complex units were
introduced they were not illustrated. The more com-
plex units were to have been the subjects of a sequel
to the paper. Illustrations, an oral presentation and an
abstract were prepared for an International Associa-
tion of Volcanology and Chemistry of the Earth's
Interior symposium in 1962 in Italy, but alas! the
paper was never written.

The cooling-unit concept was built around the
premise that the two major variables controlling the
lithologic variations in welded tuffs are emplacement
temperature of the ash flows and the thickness of the
resulting deposit. As originally planned, Professional
Paper 354-F was to have been written around a thick-
ness-temperature hierarchy of examples of actual
cooling units, but this proved to be impractical at the
time. Instead, the model was developed from the then
existing fragments of cooling units whose properties
could be reasonably extrapolated from one deposit to
another.

The sources for the illustrations in plate 20 of the
original PP354-F may now be of historical interest.
Figure A was patterned after the Battleship Rock
Tuff, Jemez Mountains, New Mexico; figure B was
patterned after the Walcott Tuff of Idaho; figures C
and D are hypothetical composites based on
observations of a large number of vertical sections of
devitrified units seen over a period of years in the
western United States. A detailed listing of these
units, even if they could all be recalled, is impractical
here, but the welded tuffs of the San Juan
Mountains, Yellowstone, and southeastern Utah,
certainly played a dominant role.

Once these "simple" patterns of plate 20 were
rationalized in a temperature-thickness context, the
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"compound" nature of the Bandelier Tuff units could
then be recognized and understood in terms of a
cumulative series of ash flows of systematically
increasing emplacement temperatures and,
ultimately, of changing compositions. Much of this
reminiscence now seems trivial but in the 1940's
and 1950's there were major problems. For years
we were puzzled as to why "vitrophyre zones," so
common under many welded tuff sheets, are
absent in the Bandelier Tuff outside the caldera, but
present inside. This can now be explained by the
compound nature of the Ban delier cooling units.
Such an explanation gives insight into eruption
mechanics.

The "zone of granophyr ic crystal l izat ion" was
postulated on the basis of observations made on a
very thick cooling unit in the Chiricahua Mountains,
Arizona (Member 6 of Enlows, 1955) and on the
Superior Dacite (now Apache Leap Tuff of Peterson,
1969), Arizona. The "zone of fumarolic alteration"
was largely speculative and, although eroded off in
most tuffs, probably exists only as a discontinuous
zone in most tuff sheets. In 1975 I encountered for
the first time a continuous "zone of fumarolic
alteration" on the ash flows surrounding Okmok caldera
on Umnak Island, Aleutian Islands, Alaska. This
zone was nearly everywhere present and ranged in
thickness from about 0.1 to about 3 meters.

Professional Papers 366 and 354-F should be up-
dated, amplified and recast into a simple quantitative
synthesis of those rocks that we know as ash-flow
tuffs. I have toyed with the idea for some years, butto

date have only outlined the problem. The comple-
tion of such a complex task would be professionally
rewarding and of interest to advanced students, but
would destroy the simplicity that makes these
publications useful to beginning students.

Modern studies of ash-flow tuffs are becoming
strongly focused in two directions: 1) Mathematical
modeling of eruption mechanics and 2) quantitative
evaluation of chemical and mineralogical evolution.
Of the two main areas of study, I think that eruption
mechanics is fascinating and particularly significant if
extended to problems of magma generation, magma
rise in the crust, and plate tectonics. However, I also
think that studies that relate to the chemical
evolution of magmas, volcano periodicity and
prediction, crustal evolution, ore deposits and their
reserves, and certain energy resources will form a
major wave of future research in earth science.
Riding the crest of the wave will be in-depth studies of
pyroclastic rocks, particularly ash-flow tuffs. We have
only just begun to tap the real wealth of knowledge
stored in these rocks.

REFERENCES
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1215-1246.
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v. 71, p. 795-842.

PREFACE
Both of these papers have been out -of -print for a number of years, much to the dismay of an

ever-growing number of geologists who by choice or necessity find themselves working with volcanic rocks.
Because much of the pioneering work on ash-flow tuffs described in both papers was done in New Mexico
and because New Mexico, as well as the rest of the southwestern United States and northern Mexico,
contains widespread accumulations of ash-flow tuffs that are currently under intensive study, the New
Mexico Geological Society felt it was both appropriate and timely to re-issue these two classic contributions
to modern volcanology. The actual reprinting effort would not have been realized, however, without the
enthusiastic support and full cooperation of the U.S. Geological Survey's Office of Scientific Publications
which supplied all of the original photographic plates.

Just to keep the record straight, the original inspiration to reprint the two papers also stems, in no
small part, from a long, frustrating and ultimately unsuccessful search for an original copy of Professional
Paper 366 for my own library.

James M. Robertson, Past President,
New Mexico Geological Society
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