The Early Cretaceous Dinosaur Tracksite at Clayton Lake: Sedimentological Observations on the Main Track Level

Students and instructors from CNM’s Applied Technology (UAS & GIS programs) and Earth & Planetary Sciences (E&PS)
“Sandflat/mudflat” close to the seashore

Source: State Parks
Construction: 1955-1958

Flooding: 1982
Unit 4
Sandstone, quartzose, fine-grained, moderately well sorted, silica cement...

Units 5-8
Thin, interbedded lithologies of silty shale and very fine grained sandstone
Main Track Surface – Features and Observations
Undertracks

- Poorly-preserved
- no skin impressions
- Some (or all?) tracks registered in thin overlying mud rock
Dinosaurs were walking on some combination of 4, 5, 6, 7, 8
Varying sediment viscosity across site

- “Firmer” to “Soupier”
- Deeper/wider tracks in soupier area
- Varying invertebrate activity
- Mudcracks and ripples
Orthoimage with contour lines
Varying invertebrate activity

Bioturbation indices after Miller and Small, 1997
Firmground (3-4) Softground (1-2)
Invertebrate burrows cut dinosaur tracks

- No dinosaur tracks cut invertebrate traces
 - Dinosaurs walking on surface before invertebrate traces

- Scoyenia ichnoassemblage
 - shallow freshwater setting
 - *Arenicolites* and *Thalassinoides* are facies-crossing ichnotaxa suggesting possible marine influence
Sandstone mounds

- Topography on the track surface when dinosaurs present
No obvious spatial patterns
Field Measurements

<table>
<thead>
<tr>
<th>Mound</th>
<th>L cm</th>
<th>W cm</th>
<th>H cm</th>
<th>Az</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>106</td>
<td>70</td>
<td>11</td>
<td>E-W</td>
</tr>
<tr>
<td>B</td>
<td>136</td>
<td>59</td>
<td>11</td>
<td>N20°W</td>
</tr>
<tr>
<td>C</td>
<td>95</td>
<td>54</td>
<td>17</td>
<td>N20°E</td>
</tr>
<tr>
<td>D</td>
<td>117</td>
<td>77</td>
<td>11</td>
<td>N70°E</td>
</tr>
<tr>
<td>E</td>
<td>117</td>
<td>60</td>
<td>11</td>
<td>N70°E</td>
</tr>
<tr>
<td>F</td>
<td>100</td>
<td>60</td>
<td>10</td>
<td>N70°E</td>
</tr>
<tr>
<td>G</td>
<td>98</td>
<td>47</td>
<td>9</td>
<td>N20°E</td>
</tr>
<tr>
<td>H</td>
<td>68</td>
<td>45</td>
<td>13</td>
<td>N50°W</td>
</tr>
<tr>
<td>I</td>
<td>124</td>
<td>47</td>
<td>13</td>
<td>N-S</td>
</tr>
<tr>
<td>J</td>
<td>230</td>
<td>115</td>
<td>16</td>
<td>N60°W</td>
</tr>
</tbody>
</table>

10 mounds
Length 68-230 cm
Width 45-115 cm
Height 9-17 cm
Cross sections and internal stratigraphy
~5,6,7,8? The surface of track registration was in this interval.
Mound avoidance?
Putting tracks, traces and mounds together...

- Topography (mounds) prior to tracks.
- Dinosaurs avoided stepping on the mounds.
Track surface not bioturbated by invertebrates until after the dinosaur tracks.

Scoyenia ichnofauna suggest shallow water of mixed salinity at the time of the burrowing.
Questions?