Middle-Late Pleistocene geomorphic features \& evolution of the eastern San Marcial basin, southern Rio Grande rift, N.M.

Daniel Koning, Dave Love, Brad Sion, Kevin Hobbs, Andrew Jochems, Kristin Pearthree

x

An extensive geomorphic surface covers most of the basin

An extensive geomorphic surface covers most
Surface projects to $\sim 25-40 \mathrm{~m}$ above the modern Rio
Grange floodplain
Post-Santa Fe Group, relatively coarse sediment be
the surface informally called the "San Marcial forme
View to north from southern part of San Marcial basin
Chupadera Mons
Mesa c
San
An extensive geomorphic surface covers m
Surface projects to $\sim 25-40 \mathrm{~m}$ above the modern
Grande floodplain
Post-Santa Fe Group, relatively coarse sediment
the surface informally called the "San Marcial fo
View to north from southern part of San Marcial bas
Chupadera Mtns

(Len
An extensive geomorphic surface covers most of
Surface projects to ~25-40 m above the modern Rio
Grande floodplain
Post-Santa Fe Group, relatively coarse sediment below
the surface informally called the "San Marcial formation
View to north from southern part of San Marcial basin
Chupadera Mtns
Mesa del C
Wan Ma
Paloma
Pr
An extensive geomorphic surface covers most of th
Surface projects to $\sim 25-40 \mathrm{~m}$ above the modern Rio
Grange floodplain
Post-Santa Fe Group, relatively coarse sediment below
the surface informally called the "San Marcial formation."
View to north from southern part of San Marcial basin
Chupadera Mtns
Mesa del Co ।
Wan Marci
Palomas

An extensive geomorphic surface covers m
Surface projects to $\sim 25-40 \mathrm{~m}$ above the modern
Grande floodplain
Post-Santa Fe Group, relatively coarse sediment
the surface informally called the "San Marcial fo
View to north from southern part of San Marcial bas
Chupadera Mtns

(Len
lent below
I formation."
sasin
Mesa del Contadero
San Marcial fm
Palomas Fm (1-1.5 Ma)
Crawford Draw
As
ow
ion."
Martial fm
mas Fm (1-1.5 Ma
Crawford Draw
el
男

San Marcial fm
 Palomas $F m(1-1.5 \mathrm{Ma})$

\title{

Unupaaera ivitns

 Mesa del Contadero

ow
ion."
el Contadero
Marcial fm
mas Fm $1-1.5 \mathrm{Ma}$
Crawford Draw
Res en
An extensive geomorphic surface covers m
Surface projects to $\sim 25-40 \mathrm{~m}$ above the modern
Grande floodplain
Post-Santa Fe Group, relatively coarse sediment
the surface informally called the "San Marcial fo
View to north from southern part of San Marcial bas
Chupadera Mtns
Me
(tan

-

7
7
7
7
7
7

Longitudinal profile of geomorphic surface

Range Totals: Distance: 14.3 mi Elev Gain/Loss: $829 \mathrm{ft} .-1882 \mathrm{ft}$ Max Slope: $55.2 \%,-13.1 \% \mid$ Avg Slope: $4.4 \%,-2.6 \%$

Questions

- Really a single geomorphic surface on San Marcial fm, and if so what age?
- Formed by aggradation or erosion (i.e., a pediment?)
- What conditions promoted the development of this feature? - still under investigation
- How does surface relate to Rio Grande base level changes?

Chupadera Mtns

Mesa del Contadero

San Marcial fm Palomas Fm

Crawford Draw

Results from field mapping

- To north, the geomorphic surface is comprised of three closely spaced surfaces (1-6 m apart).
- Each surface is associated with an allostratigraphic unit; sometimes there is more than one erosional surface on a given deposit.
- Because of areas of uncertainty in correlations, these allostratigraphic units are lumped into the lithostratigraphic San Marcial fm

Qs3 \rightarrow oldest
Qs2 \rightarrow middle
Qs1 \rightarrow youngest

Qsg\# \rightarrow Gravelly piedmont or terrace facies Qsa\# \rightarrow Axial facies near the Rio Grande

Allostratiaraphy in smaller tributary drainages NW of Rio Grande

Terrace stratigraphy away from Milligan's Gulch, Fort Craig quadrangle
SW Allostratigraphic units

Qsg3	Older, San Marcial fm (early-middle part of middle Pleistocene)
Qsg2 Middle, San Marcial fm (latter part of middle Pleistocene) Qsg1 Youngest, San Marcial fm (latest middle to early late Pleistocene) Qit Intermediate-level terraces, post-San Marcial fm (latter part of late Pleistocene) Qayo Low-level terraces, Qayo (latest Pleistocene-Holocene transition)	

Stratigraphy and age control near the Rio Grande

Two youngest allostratigraphic units

Allostratigraphic units Qsg2 and Qsg3

Can follow tread of given terrace if adequately preserved
Soil properties are helpful but surface erosion creates internal variability

Qsg2: Stage III+ to IV carbonate morphology

* Qsg3 shares a similar soil as Qsg2 but seems a little thicker.

Qsg1: Stage II+ to III carbonate morphology

Differentiating allostratigraphic units Qsg1 and Qsg2

The intermediate unit (Qit) cross-over on the Sawmill Canyon fan
先

Qsp $\frac{3}{3}$
E Ear.

$$
x=
$$

Cross-over of intermediate-level unit from terrace to piedmont

CONCLUSION

Mapping and age-control observations

San Marcial fm

1. Three main allostratigraphic deposits recognized that span the Middle to Late Pleistocene.
2. Geomorphic surfaces are closely spaced (1-6 m vertical distance).
3. Surfaces and deposits converge upstream into a compound unit (Qsp).

Intermediate geomorphic unit

1. May correlate to a Late Pleistocene unit in Socorro basin (Jaral Largo Fm, surface age of 27-29 ka) If so, then deposit is probably in range of $30-60 \mathrm{ka}$.
2. Occupies well-incised terraces near river, but upstream transitions to a piedmont-lobe unit that covers large areas of the Sawmill Canyon fan.

Interpretations

1. Although prominent erosional surfaces are present, most of extensive geomorphic surfaces are related to aggradation.
2. Upstream convergence of deposits and surfaces indicate that base level for smaller drainages is strongly controlled by fluctuating Rio Grande, and the influence of these base level changes is muted $>6-7 \mathrm{~km}$ away from the river.
3. Three Rio Grande-driven incisional events since $\sim 0.5-0.6 \mathrm{Ma}$, paleovalleys filled over time scales of several 10 s of k.y. to possibly >100 K.y.
