Volcanic rocks of the Mimbres and upper Gila drainages, New Mexico

Wolfgang E. Elston

in:
Southwestern New Mexico II, Fitzsimmons, J. P.; Balk, C. L.; [eds.], New Mexico Geological Society 16th Annual Fall Field Conference Guidebook, 244 p. https://doi.org/10.56577/FFC-16

This is one of many related papers that were included in the 1965 NMGS Fall Field Conference Guidebook.

Annual NMGS Fall Field Conference Guidebooks

Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico.

Free Downloads

NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, and other selected content are available only in print for recent guidebooks.

Copyright Information

Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. No material from the NMGS website, or printed and electronic publications, may be reprinted or redistributed without NMGS permission. Contact us for permission to reprint portions of any of our publications.

One printed copy of any materials from the NMGS website or our print and electronic publications may be made for individual use without our permission. Teachers and students may make unlimited copies for educational use. Any other use of these materials requires explicit permission.
This page is intentionally left blank to maintain order of facing pages.
INTRODUCTION

The Sixteenth Field Conference carries the New Mexico Geological Society through parts of one of the world's greatest volcanic provinces. There is rarely a moment when volcanic rocks, mainly of Tertiary age, are not visible. Andesite, latite, and rhyolite predominate; basalt is relatively scarce.

The dominant influence of volcanics on the geology of southwestern New Mexico was apparent as early as 1905 when the great Waldemar Lindgren devoted a lengthy section of his classic report (in Lindgren, Gratton, and Gordon, 1910) to their distribution, stratigraphy, and petrography. In the succeeding 60 years many local details have been worked out, mainly by geologists of the U.S. Geological Survey and the New Mexico Bureau of Mines and Mineral Resources, but many fundamental questions remain unanswered. How and where was the magma generated and differentiated, 10^4 to 10^6 cubic kilometers of which was ejected in southwestern New Mexico alone? What was the mechanism of eruption? Where were the eruptive centers, and what structures controlled them? What were the tectonic effects of the withdrawal of this vast volume of magma from its reservoirs? What relationship, if any, do the oldest eruptive centers have to the metal-bearing porphyry bodics? Finally, what was the source of energy for volcanism on so immense a scale? Our principle of uniformitarianism is put to a severe test. Nowhere have eruptions of this magnitude been recorded in historic time. This becomes especially apparent when we consider the volumes of individual rhyolite ash-flow cooling units such as the Kneeling Nun Rhyolite (see article by D. L. Giles, this guidebook).

Impressive as it is, the volcanic province of southwestern New Mexico is only a small block of the circum-Pacific belt. More locally, the relatively continuous volcanic rocks of the Mogollon Plateau north of Silver City continue to the south and southwest, where their former continuity has been broken by Basin and Range faults. Similarities in volcanic sections of adjacent ranges indicate that they were once parts of a nearly continuous blanket thousands of feet thick, consisting of many local lenticular units. Farther south yet, in the Sierra Madre Occidental of Mexico, the volcanics once again form a continuous plateau, one of the largest, but least known, magmatic provinces of our planet.

The tectonic setting of the volcanic province is worth noting. Part of it coincides with parts of the Mexican geosyncline but it spreads far beyond the limits of any geosyncline, across the Basin and Range Province and into the Colorado Plateau. Many geologists have assumed that geosynclinal belts and volcanism of the andesite-rhyolite family are inextricably linked. From this, astronomers and geophysicists have concluded that bodies like the Moon or Mars that lack geosynclines must also lack large scale non-basaltic volcanism. Detailed study of the Cordilleran orogenic belt suggests that this notion is a gross oversimplification.

The material in this article that refers to rocks of the Upper Gila drainage basin has not been published previously. Except where specifically credited to other sources, it was gathered during 1964-65, in the course of a project that is still far from finished. It must be regarded as tentative. Figure 1 shows localities mentioned in the text.

VOLCANIC SUCCESSION

Superficially seen, the stratigraphic succession seems simple: in many places andesite is overlain by rhyolite, which in turn, is overlain by basalt. This simplicity is deceptive. As field work progresses, it is becoming apparent that rocks which look alike are not necessarily of the same age. Conversely, unlike rocks from different eruptive centers are found to interfinger (fig. 2). Specifically, the andesite-rhyolite association (which includes rock like latite, intermediate between andesite and rhyolite) recurs many times. The dark basaltic-looking rocks do indeed occur late in the history of the region, but detailed studies show them to include many petrographic types, from rocks on the rhyolite-latite boundary to, rarely, true olivine-bearing basalts.

CRETACEOUS AND EARLY TERTIARY VOLCANIC ROCKS

Field evidence has indicated late Cretaceous or very early Tertiary age for the oldest, dominantly andesitic, volcanic rocks. Between Silver City and Pinos Altos, for instance, andesite breccias have been intruded by
FIGURE 1
Map of Southwestern New Mexico, showing localities mentioned in the text.

Numbers show locations of restored columnar sections in Figure 2.

SCALE IN MILES
Tentative correlation of Tertiary volcanic rocks of parts of the Mimbres and upper Gila drainages. Locations of restored columnar sections and sources of data: 1) Dwyer quadrangle (Elston, 1957); 2) State Highway 61, between Rocky Canyon and Black Canyon (Elston, this article); 3) Pinos Altos Range between Cherry Creek and Pine Flats (Elston, this article); 4) Middle and West Forks of Gila River and Little Creek, near Gila Cliff Dwellings National Monument (Elston, this article); 5) Mogollon Mountains, north wall of Bearwall Canyon, 3 miles from junction with Mineral Creek (Peter J. Coney, personal communication, August 1965); 6) Mogollon mining district (Ferguson, 1927). See fig. 1 for locations.
Laramide porphyries and dikes, have undergone various types of hydrothermal and deuteric alteration (especially epidotization), and are hosts to Laramide ore deposits. No absolute age determinations have yet been made in southwestern New Mexico, but in Arizona Damon (1965) has demonstrated the existence of a widespread group of volcanic rocks with K-Ar ages in the range of 54 to 76 m.y.

Late Cretaceous to early Tertiary volcanic rocks have not yet been identified in the Mimbres Valley. In the Gila Country, andesite, locally intensely altered, intruded by monzonite and rhyolite porphyries, and mineralized, occurs at the mouth of the Gila Canyon northeast of Gila, New Mexico (the Gila Fluorspar mining district) and at the western foot of the Sackett-West Baldy part of Mogollon Mountains, near the Grant-Catron County line (the Wilcox tellurium mining district). The geology of neither area is known in detail. Epidotic alteration is conspicuous in the Wilcox district.

The regional extent of the late Cretaceous-early Tertiary volcanic rocks is poorly known because they are usually covered by Tertiary rocks not always distinguishable from them. Among possible occurrences seen at a distance during the 16th Field Conference are the Macho mining district southwest of Lake Valley, the Hillsboro area, the Steeple Rock mining district north of Virden, the Pyramid Mountains and Apache Hills, and the Peloncillo Mountains near Steins Pass. In the Steeple Rock area their late Cretaceous age can be confirmed on stratigraphic-paleobotanic grounds (Elston, 1960).

Early Cretaceous and pre-Cretaceous Mesozoic volcanic rocks have been reported from many localities in southwestern New Mexico, southeastern Arizona, and especially, northern Mexico (King, 1939), but their age needs to be confirmed. They are not known from the Mimbres and Gila drainages.

TERTIARY VOLCANIC ROCKS

The great bulk of volcanic rocks seen during the 16th Field Conference is Tertiary in age. Regionally, a range of ages between 14 and 41 m.y. has been reported from K-Ar determinations. The absence of reported ages between 41 and 54 m.y. is probably due to a hiatus between the Laramide and Cascadian orogenies and not merely to lack of data. Damon (1965) came to the same conclusion. In many places the Tertiary volcanics lie with profound angular unconformity on older rocks, volcanics and others, deformed by the Laramide orogeny. Examples are to be seen around Pinos Altos and at Steins Pass, among other places.

For convenience, the Tertiary volcanic rocks can be divided into three groups, which are, in order of age: (1) the Datil group, mainly in the andesite to rhyolite range, (2) the Basaltic Group, consisting of dark-colored basalt, mafic andesite, and associated felsic rocks, and (3) rhyolites, latites, and basaltic rocks younger than the Basaltic Group.

Datil Group:—The great mass of the volcanic mountain of southwestern New Mexico consists of a complex succession of andesites, latites, quartz latites, and rhyolites. To name these rocks, Weber and Willard (1959a and b) and Willard, Weber, and Kuehlmier (1961) carried the term “Datil Formation” from the country north of the San Augustin Plains to the Mimbres and Upper Gila drainage areas. In the road log of this guidebook, R. H. Weber has wisely suggested expanding the “Datil Formation” to “Datil Group.”

The most conspicuous and widespread members of the Datil Group are the rhyolite and quartz latite ash-flow tuffs. At least three major sequences have been recognized to date. At this stage, it is premature to assign them stratigraphic names. In this article they are informally termed, in order of age, (1) the Whitewater Creek Rhyolite-Cooney Quartz Latite section, (2) biotite-rich two-feldspar rhyolites and quartz latites, and (3) Moonstone Tuff.

Whitewater Creek Rhyolite and Cooney Quartz Latite were first described by Ferguson (1927) in the Mogollon mining district. Between them they are up to 2000 feet thick. Compared with the younger ash-flow units, they are characterized by a scarcity of megascopically visible quartz, and by relatively poorly developed columnar joints. The entire Whitewater Creek Rhyolite is remarkably massive. It makes up the vertical walls of the Whitewater Creek gorge east of Glenwood, accessible to tourists through The Catwalk. Cooney Quartz Latite consists of massive beds of rhyolite and quartz latite ash flows, generally tens of feet thick and locally separated by lenticular beds of purplish-brown andesite tuff. Similar rocks can be seen from Mogollon south along the front of the Mogollon Range for about 35 miles. Since the geology of this country has not yet been mapped in detail it is uncertain whether a single formation is present or several. The Whitewater Creek-Cooney section will not be seen during the 16th Field Conference.

The second sequence of ash-flow tuffs includes the Kneeling Nun Rhyolite of the Santa Rita area and its probable equivalents in the Pinos Altos, Mogollon, and Black Ranges, as well as a complex succession of flows, tuffs, and ash-flow tuffs above and below. Locally, its thickness exceeds 2000 feet. As a whole, the group is characterized by an abundance of megascop-
ically visible phenocrysts of quartz, biotite, glassy sani-
dine, and variable amounts of plagioclases (usually
andesine or oligoclase). Ash-flow tuff members tend to
have well developed columnar joints.

During the first day the 16th Field Conference
crosses a great thickness of the ash flows resembling
the Kneeling Nun Rhyolite on the west flank of the
Black Range (Kuellerh, 1954). Later in the same day,
the same rocks are crossed again in the Dwyer-Faywood
area of the Mimbres Valley, (Elston, 1957), but here
they include a large proportion of stratified water-laid
beds, mainly in the Sugarlump Rhyolite Tuff. These
suggest that this area was at some distance from the
eruptive centers, which probably were in the moun-
tains to the northeast and north. On the second day,
about 2000 feet of massive quartz latite ash flows, with
only a little intercalated water-laid material, are crossed
in Cherry Creek, north of Pinos Altos. On the third
day, similar rocks are visible at a distance in many of
the fault-block ranges of Hidalgo County.

The third sequence of rhyolite ash flows, the Moon-
stone Tuff, is characterized by the presence of con-
spicious phenocrysts of quartz and moonstone (sani-
dine cryptoperthite) and by a relative scarcity of bio-
tite and plagioclase. Massive, columnar-jointed ash
flows form spectacular 700-foot cliffs in the canyon
walls of the West and Middle Forks of the Gila River
northwest of Gila Cliff Dwellings National Monu-
ment. Their thickness there is at least 1000 feet and
may be considerably more. They seem to center on the
poorly known Diablo Range. From there they extend
southward into the northwestern end of the Pinos
Altos Range and northward into the east flank of the
Mogollon Range. State Highway 78 crosses them for
many miles east of the Silver Divide. They are absent
in Mimbres Valley but just to the north, at the point
where State Highway 61 crosses Rocky Canyon, a
single bed of moonstone-bearing rhyolite tuff lies di-
rectly on rhyolite that resembles Caballo Blanco Rhy-
olite, the highest member of the previous group of bio-
tite-rich two-feldspar ash flows in the Mimbres Valley.
Moonstone Tuff forms most of the higher ledges of the
magnificent 3000-foot canyon of the Gila River
downstream from the junction of the three forks of the
Gila River. It continues for at least 15 miles south-
westward beyond the mouth of the Gila Canyon, into
the Bear Mountain-Silver City Range and the School-
house Mountain quadrangle at the northern end of the
Big Burro Mountains (Wargo, 1959). A sample of
Moonstone Tuff from the Schoolhouse Mountain
quadrangle yielded a K-Ar age of 26.5 ±0.9 m.y., on
the Oligocene-Miocene boundary (Damon, 1965).
This age is most significant. The Moonstone Tuff is
the youngest known member of the Datil Group in the
Mimbres-Upper Gila drainage basin. The Datil Group
must then be largely older than the Miocene(?) age
usually assigned to it. Oligocene K-Ar ages for pre-
Moonstone Tuff Datil rocks from the area north of
the Gila drainage basin, cited by Weber and Bassett
(1963) and Burke and others (1963), are compatible
with this conclusion.

The route of the 16th Field Conference crosses out-
crops of Moonstone Tuff in two places on the second
day of the trip: in the Pine Flats area of the Pinos Al-
los Range, and again between Gila Hot Springs and Gila
Cliff Dwellings National Monument. Around
Gila Hot Springs, the moonstone has lost its irides-
cence through hydrothermal alteration.

All three rhyolite suites are locally underlain by
thick sections of andesite and latite. Examples are the
purple-brown andesite beneath the Whitewater
Creek-Cooney suite at the western foot of the Mo-
gollon Mountains, the Rubio Peak Formation beneath
the Sugarlump-Kneeling Nun suite in the Mimbres
Valley, and the andesite and latite beneath the Moon-
stone Tuff in the Copperas Peak-Alum Mountain area.
Although not as widespread as the rhyolites, the ande-
sites and latites locally reach thicknesses on the order
of 5000 feet. The accumulations must be bevelled
at the top because the overlying rhyolites seem to
have been deposited on surfaces of relatively low relief.
No genetic connection has yet been established be-
tween each rhyolite suite and the underlying andesite-
latite suite.

Basaltic Group:—The Datil Group tends to be light
colored because of the abundance of rhyolite. It is
overlain and locally interlayered with predominantly
dark colored rocks which can be superficially taken
for basalt. Actually, true basalt is scarce. The charac-
teristic rock type of the group is fine-grained to glassy,
deep black, vesicular andesite containing little or no
olivine or its alteration products. It contains more al-
kalies and silica than true basalt. Howel Williams has
applied the name “basaltic andesite” to this type of
rock, which has the blocky, ropy, or amygdaloidal pri-
mary structures popularly associated with basalt. Rocks
of this type are common on the west flank of the
Black Range in the McKnight Peak-Reeds Peak area,
in Beaver Creek Canyon near Beaverhead, in the Pinos
Altos Range around Signal Peak, and in the higher
parts of the Mogollon Mountains. Volcanic bombs
at the top of Bearwallow Mountain, about 9 miles
northeast of Mogollon, are evidence of a former vol-
canic vent.

Basaltic andesite is commonly accompanied by fine-
grained, dark gray or black siliceous rocks, on the
latite-rhyolite boundary. The two rock types make up,
respectively, the andesite and rhyolite members of the Razorback Formation in the Mimbres Valley, seen on the first day of the Field Conference. The rhyolite member abounds in spherulitic and perlitic zones. Intricate flow folds are common. Fracturing parallel to the plane of movement has caused the rock to develop shale-like fissility. Rocks of this type are known from the Black Range as well as from the Mimbres Valley.

More basaltic members of the Basaltic Group contain abundant olivine or its alteration products (especially brown flakes of “iddingsite,” now taken to be a form of goethite), even though the norm may show a trace of quartz. The groundmass tends to be more stony than in basaltic andesite. It is composed of a finely holocrystalline aggregate of labradorite, pyroxene, and magnetite. For some reason, basalt seems to be scarce or absent on the higher mountains but common at lower elevations. Bear Springs Basalt overlies the Razorback Formation in the Mimbres Valley. Similar rocks occur in the Gila Valley. They are prominent around Gila Cliff Dwellings National Monument and further downstream, in the highest parts of the walls of the Gila Canyon.

Characteristically, the rock types of the Basaltic Group lack simple stratigraphic boundaries. Within the group, the various rock types appear in different stratigraphic order in different places. Locally, representatives of the Basaltic Group occur within the upper part of the Datil Group, even though the bulk of the Basaltic Group lies unconformably on top of the Datil Group. Examples of “stray” intra-Datil basaltic rocks are basaltic andesite underneath Moonstone Tuff in parts of the Pinos Altos and Silver City Ranges and the Rustler Canyon Basalt, found locally underneath Caballo Blanco Rhyolite in the Santa Rita-Mimbres Valley region. Rocks resembling Razorback Rhyolite are known from pre-Moonstone Tuff latites in the Sapillo Creek area south of Copperas Peak. There are also a few local occurrences of Datil-like rocks within the Basaltic Group—further proof that the late stages in development of one group overlapped the early stages of the other. Basalt and basaltic andesite are also common in the next volcanic group.

The age of the Basaltic Group is poorly documented. It is bracketed between the 26.5 ± 0.9 m.y. age of the Moonstone Tuff and the 18.5 m.y. age of post-basalt rhyolite from the Mule Creek area (see below). A K-Ar age of 19.8 ± 3.0 m.y. for a basaltic andesite from Tumamoc Hill, Pima County, Arizona (Damon, 1965) falls within the same range. In the Roberts Lake area and around Cliff, New Mexico the latest basalts and basaltic andesites are interlayered with the basal part of the Gila Conglomerate.

Post-Basaltic Rocks:—Tertiary volcanic rocks younger than the main basaltic sequences are not voluminous, but they are known from many localities. Rhyolite and latite predominate, but basalt and basaltic andesite are known. Evidently, the renewal of felsic volcanism did not bring the earlier basaltic andesite eruptions to an end; the two types seem to have coexisted.

In the Mimbres Valley, between Dwyer and San Juan, Bear Springs Basalt is intruded by a plug dome of Swartz Rhyolite, a relatively calcium-rich rock (delenite) containing phenocrysts of sanidine, andesine, quartz, and biotite. Flows and flow breccias of the same rock locally overlie Bear Springs Basalt.

Post-basalt rhyolite has been reported from the Jerky Mountains, 15 miles northeast of Mogollon, by Weber and Willard (1959a). West of the Duck Creek-Gila Valley post-basalt rhyolite, containing much perlite and locally interbedded with Gila Conglomerate, has been mapped in many places by Weber and Willard (1959a) and Elston (1960). Obsidian nodules (“Apache Tears”) in perlite collected west of Mule Creek in SE 1/4 sec. 6, T. 14 S., R. 21 W. have yielded a K-Ar age of 18.6 m.y. (Weber and Bassett, 1963).

North of Gila Cliff Dwellings National Monument, on the lowest 5 miles of the Middle Fork of the Gila River, the Basaltic Group is overlain by up to 300 feet of poorly consolidated pumiceous rhyolite tuff, containing boulders of Moonstone Tuff. It is interbedded with beds of sandstone and conglomerate resembling Gila Conglomerate and capped by a single flow, several tens of feet thick, of dark gray latite containing phenocrysts of plagioclase and a green prismatic ferromagnesium mineral (hypersthene?). Similar latite occurs about 12 miles to the northeast in the Wall Lake-Beaverhead area. The dam at Wall Lake is anchored on it. The latite there rests on sandy rhyolite tuff, only about 30 feet thick, which lies in turn on black basaltic andesite. This sequence is best exposed in Beaver Creek Canyon east of Beaver Points.

By present indications, admittedly based on incomplete reconnaissance work, Black Mountain, west of Beaver Points, is a composite volcano younger than the main Basaltic Group. It retains relics of volcanic morphology. In Jordan Canyon, which dissects the southern slope of Black Mountain, the following section is exposed: at the base, basaltic andesite, overlain by about 200 feet of sandstone and pumiceous rhyolite tuff containing boulders of Moonstone Tuff and capped by dark basalt containing minute crystals of “iddingsite.” To the south, on the lower slopes of Black Mountain, this section is faulted against Moon-
stone Tuff, as is the post-basalt section exposed north of the Gila Cliff Dwellings. Correlation between the two sections has therefore not yet been possible. To the north, the Jordan Canyon section is in contact (fault?) with flow-folded chocolate-brown vesicular andesite flows and flow breccias that make up the core of the Black Mountains. A circular drainage pattern suggests that this rock occupies what was formerly a rimmed topographic basin about 3 miles across, perhaps a caldera. The highest part of Black Mountain is on the northern rim of this basin.

Rhyolitic rocks of approximately the same K-Ar age as the dated sample from Mule Creek, New Mexico are common in southeastern Arizona. For example, in the Chiricahua Mountains an age of 16.2 ±0.7 m.y. was obtained by Damon (1965) from Unit 6 of Enlows' (1955) Rhyolite Canyon Formation. Contemporaneous rocks are probably present in nearby ranges in New Mexico, such as the Weatherby Canyon Ignimbrite in the Peloncillo Mountains (Gillerman, 1958). Since the Basaltic Group is generally absent in Hidalgo County south of the Gila River, it is difficult to distinguish Datil and post-Datil rhyolites in the field.

QUATERNARY VOLCANIC ROCKS

The lower Mimbres Valley, between Deming and El Paso, is bordered on the east by the West Potrillo Mountains, the largest area of Quaternary volcanic rocks in southwestern New Mexico. On the United States side of the Mexican border alone, flat-lying olivine basalt flows cover Quaternary valley fill over an area of 300 square miles. Erosion has only slightly modified the shapes of dozens of small volcanic cones. Kilbourne Hole is the most famous feature of this volcanic field (see De Hon, p. 204, 238, this guidebook). Smaller patches of olivine basalt are widely scattered over the Rio Grande valley and the Deming-Columbus-Hachita area. On the second day of the Field Conference a late Tertiary or early Quaternary basalt flow, interlayered with the upper part of the Gila Conglomerate, can be seen on high bluffs east of the Mimbres River, 5 miles north of Mimbres.

It is uncertain whether there are any non-basaltic Quaternary volcanic rocks in southwestern New Mexico. Relatively undissected cone-like masses of rhyolite, dacite, and andesite in and around Soldier's Farewell Mountain, in T. 22 S., Rs. 14 and 15 W., lie unconformably on Gila Conglomerate and pre-Gila volcanic rocks; Ballmann (1960) considered them to be Quaternary. Similar rocks occur elsewhere, as in the Vanar Hills on the Arizona side of Steins Pass (Gillerman, 1958) and at Canador Peak on the Gila River near Virden.

The association of certain rhyolites with active thermal springs is circumstantial evidence for a relatively young age for the rhyolites. At Faywood Hot Springs (seen on the first day of the Field Conference) an active thermal spring is associated with an intrusive rhyolite dome, and rhyolite was also encountered in a water well on the east side of the Animas Valley southwest of Lordsburg. The well yielded boiling water with a temperature of 210°F (Kintzinger, 1956). Absolute ages are not yet available on any of the non-basaltic rock suspected of being Quaternary.
The bottoms of flows and the margins of intrusive bodies locally consist of perlitic glass, which grades into stony rock via a spherulitic zone. The perlitic base of flows, in turn, commonly rests on bedded Moonstone Tuff. Twenty miles to the southeast, where State Highway 61 crosses Rocky Canyon, another complex, of slightly different lithology overlies Moonstone Tuff. In the Cherry Creek area north of Pinos Altos, biotite-rich two-feldspar quartz latite contains fragments of flow-banded rhyolite and is in turn intruded by a slightly different (biotite-rich) rhyolite. In the Mimbres Valley, complexes of at least two ages are known: the Mimbres Peak Rhyolite, part of the Datil Group, and the Swartz Rhyolite which is younger than the Basaltic Group. Certain rhyolite domes, such as the Faywood Rhyolite, may be younger yet. At Mogollon two of Ferguson’s map units are parts of rhyolite complexes, the Pacific Quartz Latite and the Fannney Rhyolite. Many more examples could be cited.

In an abstract in this guidebook and in another article (Elston, 1965), I have discussed the possibility that the Mogollon Plateau is the surface expression of a structurally controlled ring-dike system 75 miles in diameter. The ring dikes consist of discontinuous arcuate belts of intrusive-extrusive rhyolite complexes. During 1964-65 I traced these belts over more than half of the postulated ring-dike system, from the Mogollon Mountains to the Black Range, through the Diablo Range and the unnamed range east of Copperas Peak. Sparse published data (Stearns, 1962) indicate that the northern semicircle of the ring-dike system can also be traced. Breaching by the Quaternary faults that border the San Augustin Plains introduce a complicating factor.

The Mogollon, Wilcox, Gila Fluorspar, Alum Mountain and Taylor Creek mining districts, are situated on segments of the ring-dike system. No mineralization is known in areas where intrusive-extrusive rhyolite complexes are absent. Mineralizing fluids and rhyolite magmas seem to have ascended along the same system of fractures. A genetic relationship between magmas and mineralizing fluids may exist but has not yet been demonstrated.

REFERENCES

Kintzinger, P. R., 1956, Geothermal survey of hot ground water near Lordsburg, New Mexico: Science, v. 124, No. 3223, p. 629-630.

