Possible source areas for sandstone copper deposits in northern New Mexico

Dennis J. LaPoint, 1974, pp. 305-308

in:

This is one of many related papers that were included in the 1974 NMGS Fall Field Conference Guidebook.

Annual NMGS Fall Field Conference Guidebooks

Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico.

Free Downloads

NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks.

Copyright Information

Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. No material from the NMGS website, or printed and electronic publications, may be reprinted or redistributed without NMGS permission. Contact us for permission to reprint portions of any of our publications.

One printed copy of any materials from the NMGS website or our print and electronic publications may be made for individual use without our permission. Teachers and students may make unlimited copies for educational use. Any other use of these materials requires explicit permission.
This page is intentionally left blank to maintain order of facing pages.
INTRODUCTION

Sandstone copper deposits in northern New Mexico occur predominantly in rocks of Permian and Triassic age. Chalcocite is the primary ore mineral with malachite and azurite as oxidation products. In the Permian deposits chalcocite occurs as nodules in organic shales and siltstones and as replacement of woody material in small sandstone channels. These beds lie in a fluvial sequence of red muds, red arkosic siltstones, sandstones, and conglomerates. Examples of deposits include the Scholle district with mineralization in the Abo Formation (Phillips, 1960; LaPoint, 1974a,b) and the Coyote district with copper-uranium mineralization in the Pennsylvanian-Permian Sangre de Cristo Formation (Tschanz, and others, 1958). Triassic deposits (Fig. 1) occur in basal sandstones or conglomerates of the Chinle Formation or equivalent strata. Representative deposits include the Nacimiento and Eureka Mines with mineralization in the Agua Zarca Sandstone (Antony, 1972; Woodward and others, 1974) and the Stauber Mine with mineralization in the Santa Rosa Sandstone. The deposits occur in large fluvial sandstone channels. Chalcocite replaces woody debris, and malachite and azurite cement the sandstone.

One aspect in a study of these deposits is the question of possible sources of copper. Three general possibilities which will be discussed are:

1. Post-depositional igneous activity.
2. Contemporaneous (late Paleozoic or Mesozoic) igneous activity.
3. Erosion of Precambrian highlands.

RECENT IGNEOUS ACTIVITY

Within the vicinity of most deposits, there is some evidence of post-depositional igneous activity. This includes small dikes south of the Scholle district, the Jemez volcanics east of the Nacimiento and Eureka Mines, and Tertiary intrusives near the Coyote district and Stauber Mine. However, all of the sandstone copper deposits discussed lack mineralized dikes or veins (except a dike south of Scholle), high temperature or complex ore mineralogy, and alteration assemblages. Copper mineralization is confined mainly to beds of Permian and Triassic age with minor occurrences in Pennsylvanian rocks. If young fluids of any type formed these deposits, one would expect other rocks in the section to be mineralized.

LATE PALEOZOIC OR MESOZOIC IGNEOUS SOURCES

Evidence of igneous activity during Permian and Triassic times in western Nevada, California, and southeastern Arizona consists of intrusives and associated volcanic rocks. Volcanic ash and ash-flow tuff may have covered large areas, creating potential source beds for copper, as suggested by Phillips (1960). Volcanic rock fragments are found in the Triassic Agua Zarca Sandstone; however, major source areas for the sandstone are Precambrian rocks in the Triassic Uncompahgre Highlands to the northeast of the Nacimiento Mine. Also, volcanic detritus thins to the north, away from the volcanism in the Mogollon Highlands during Chinle deposition (Stewart and others, 1972). Volcanic rock fragments have not yet been reported from either the Santa Rosa Sandstone or the Permian Abo Formation. The sources for both of these formations are also uplifts of Precambrian rocks (Fig. 1).

Regardless of the fact that the main source of sand detritus was from Precambrian rocks, volcanic ash may still be a source if it covers wide areas and can be leached of metals during diagenesis (Harshman, 1972). Chemical data for Cenozoic rhyolite ash-flow tuffs (Fig. 2) indicate a low copper content that decreases with increasing silica content. Similar Mesozoic volcanic rocks from southeast Arizona (Fig. 2; Table 1), the most likely source of volcanic material from the Chinle Forma-
tation, also have low copper values. Based on average copper content (Table 1), minor leaching of copper may have occurred, especially in the less silicic volcanic rocks of Mesozoic age.

To form an orebody the size of the Stabur Mine with 7.5 million pounds of copper, \(2.7 \times 10^4\) cubic meters (9.6 \(\times 10^4\) cubic feet) of volcanic rock would have to be leached at 5 ppm copper per cubic meter. If the volcanic bed were one meter thick, its area would cover \(2.7 \times 10^4\) square meters (2.95 \(\times 10^5\) square feet). These figures assume maximum leaching of the copper based on chemical data from Table 1 and complete precipitation of the copper at the sedimentary deposit. However, there is no evidence of large volcanic beds associated with the sandstone channels. In addition, the volcanic ash would have to travel at least 200 miles. This material would represent the more explosive, silicic, and copper-poor fraction of an eruption.

PRECAMBRIAN SOURCES

Precambrian rocks that were exposed in the Permian and Triassic uplifts are an attractive source for the copper found in the northern New Mexico sediments. Lindgren (1908) cited the close association of Precambrian ore deposits and red-bed copper deposits near Cotopaxi, Colorado. Others (Phillips, 1960) have related copper mineralization in Precambrian rocks in the Zuni Mountains with sandstone copper found in con-

glomerates of the Abo Formation which flanks the uplift. However, the question arises, is it necessary to have preexisting ore deposits to form sandstone copper deposits?

Precambrian ore deposits are found throughout north-central New Mexico (Fig. 1). Known deposits include the Pecos Mine (Krieger, 1932), the Hopewell and Bromide districts (Barker, 1958; Bingler, 1968; McLeroy, 1970), the Champion Mine in the Picuris district (Montgomery, 1953; Schilling, 1960), the Rio Hondo district (Schilling, 1960; Clark and Read, 1972), the Santa Fe district (Lindgren and others, 1910), and Tijeras Canyon district (Reiche, 1949). In general, mineralization consists of sulfides or oxides of copper, lead, and zinc with silver and gold. Veins or pods of mineralization may parallel the foliation within zones of phyllites, schists, or gneisses. Surrounding rocks may be amphibolites, chlorite schists, sericitic schists, metaryholites, banded iron formations, and quartz-eye schists or gneisses. Many of these ore bodies represent massive sulfide deposits (Sanger, 1972) within a Precambrian metavolcanic terrain similar to the massive sulfide deposits in central Arizona (Anderson, 1968; Anderson and Nash, 1972), and they may, in fact, be part of the same trend.

Precambrian ore deposits form an excellent source, similar to porphyry copper deposits, that erode to produce copper-bearing gravels (Newburg, 1967). Gabelman and Brown (1955) report a chalcolite placer within the Agua Zarca Sandstone, and Heyl and Bozian (1973) report a fossil gold placer in Pennsylvanian sandstones overlying the Precambrian near the Pecos Mine. However, it is felt that the concept of a source consisting only of preexisting mineral deposits is too restrictive, considering the large number of small occurrences of sandstone copper (Fig. 1). In contrast, Precambrian rocks as a whole are too broad a source. Instead, it is proposed that the Precambrian metavolcanic rocks, possibly supplemented by massive sulfide horizons, form the most likely source for the New Mexico deposits.

Analyses of igneous rocks show that copper is enriched in mafic rocks, with an average of 100 ppm copper in basalts (Vinogradov, 1962). Copper may be found as sulfides, replacement of Fe and Mg in silicates, or as an ion absorbed by various minerals (Rabinovich and Badalov, 1971). Therefore, high copper concentrations can occur in rocks containing hornblende, biotite, chlorite, sulfides, and iron oxides. Plagio-

RECENT ASH-FLOW TUFFS

<table>
<thead>
<tr>
<th>Source</th>
<th>Cu (ppm)</th>
<th>SiO₂ (wt%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>San Juan Mountains</td>
<td>7 ppm</td>
<td>68.35</td>
</tr>
<tr>
<td>Nevada test site</td>
<td>7 ppm</td>
<td>68.02</td>
</tr>
<tr>
<td>TOTAL</td>
<td>7 ppm</td>
<td>68.45</td>
</tr>
</tbody>
</table>

Table 1. Chemical analyses of rhyolitic ash-flow tuffs. Sources are: Lipman (unpublished data, 1973), Lipman and others (1966), Ratté and Steven (1967), Greene (1973), Lindsey and others (1973), Sheppard and Gude (1973), Drewes (1971), and Simons (1972).
copper as quartzites and granitic rocks and comprises the only Precambrian rock defined as anomalous in copper by Misaqi (1968). The Rio Hondo district lies within this area and consists of copper sulfides with quartz in chlorite schist; gold and silver are also reported. From mining company reports and Clark and Read’s (1972) rock descriptions, it appears that metavolcanic rocks, termed mafic gneiss, occur within the area.

Sulfides remain an attractive source because copper and other metals are easily mobilized during weathering. However, most of the metal will precipitate a short distance from its origin as the acidic waters regain equilibrium with the silicate sediments (Newburg, 1967). If sulfides are considered as a source for the present copper deposits in sandstones, the copper must have been remobilized by groundwater passing through copper-rich alluvial sediments.

In addition to the sulfides, a second reservoir of copper is contained within the mafic silicate minerals and feldspars. During diagenesis and the reddening of alluvial sediments (Walker, 1967), copper along with iron and other metals can be released with the breakdown of ferromagnesian minerals and alteration of plagioclase to clay minerals. An alkaline, oxidizing groundwater will develop, which can carry copper as carbonate complexes. The groundwater migrates downip in the sandstone channels; precipitation of copper as chalcocite occurs in reducing micro-environments in organic shales and around organic material in the channels. This model, at present, seems to explain the Triassic deposits.

Mineralization in the Permian deposits occurs in organic shales and siltstones and in channel sandstones. It is possible that copper-rich montmorillonite clays and/or copper-organic complexes were eroded from weathered, copper-rich metavolcanic rocks. Streams carried the clays and/or organics to a quiet water environment where they were deposited. Dewatering during compaction of the sediment would lead to remobilization of the copper. Chalcocite nodules could form in the organic shales and siltstones along with replacement of woody material in adjacent sandstone channels.

In summary, although the relative importance of the various transportation and depositional processes cannot yet be determined, there is good evidence that the primary source for northern New Mexico copper was Precambrian metavolcanic terrains north of the present deposits.

REFERENCES

LaPoint, D. J., 1974a, A comparison of selected sandstone-type copper deposits in New Mexico (abs.): Geol. Soc. Am. Abst. w/Prog., v. 5, p. 112.

LaPoint, D. J., 1974b, Genesis of sandstone-type copper deposits at the Scholle district, Centaal New Mexico (abs.): Geol. Soc. Am. Abst. w/Prog., v. 5, p. 451-452.

Montgomery, A., 1953, Pre-Cambrian geology of the Picuris Range,
Rabinovich, A. V., and Badalov, S. T., 1971, Geochemistry copper in some intrusives of Karamazar and West Uzbekistan: Geochem. Internat., v. 8, p. 146-150.