Lower part of the marine Cretaceous at Gold Creek, Vermejo Park, New Mexico

Charles L. Pillmore and D. L. Eichler

in:

\textit{This is one of many related papers that were included in the 1976 NMGS Fall Field Conference Guidebook.}

Annual NMGS Fall Field Conference Guidebooks

Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico.

Free Downloads

NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, and other selected content are available only in print for recent guidebooks.

Copyright Information

Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. No material from the NMGS website, or printed and electronic publications, may be reprinted or redistributed without NMGS permission. Contact us for permission to reprint portions of any of our publications.

One printed copy of any materials from the NMGS website or our print and electronic publications may be made for individual use without our permission. Teachers and students may make unlimited copies for educational use. Any other use of these materials requires explicit permission.
This page is intentionally left blank to maintain order of facing pages.
LOWER PART OF THE MARINE CRETACEOUS AT GOLD CREEK, VERMEJO PARK, NEW MEXICO

CHARLES L. PILLMORE
U.S. Geological Survey, Denver, Colorado 80225
DON L. EICHER
University of Colorado, Boulder, Colorado 80302

INTRODUCTION
An unusually clean exposure of Upper Cretaceous marine rocks, including the Graneros, Greenhorn and Carlile formations, and the Fort Hays and Smoky Hill Members of the Niobrara Formation occurs at Gold Creek on the east flank of the Sangre de Cristo Mountains in extreme northern New Mexico. Throughout most of this area, the ridge-forming Dakota Sandstone is commonly vertical or overturned, and the marine shale part of the sedimentary section is usually covered by debris from the Dakota. In areas to the north, where the Dakota dips eastward into the Raton Basin, the nonresistant marine shales, marls and limestones form slopes that are generally covered by soil and colluvium.

The excellent exposure of Upper Cretaceous rocks at Gold Creek is the apparent result of a combination of landsliding and erosion that occurred on the north side of the creek, immediately east of the point where the creek cuts through The Wall—a steep, rugged hogback formed by resistant rocks of the Dakota Sandstone. We measured a stratigraphic section at this location on July 20, 1966, and collected samples for microfossils. We were assisted by P. J. Varney, U.S. Geological Survey, and C. Porter, University of Colorado. In the laboratory, Michael Evetts analyzed the foraminifera from the upper black shale unit of the Carlile Formation.

Location
The Gold Creek exposure (Fig. 1) is near the road from Vermejo Park to Costilla Lodge in sec. 8, T. 31 N., R. 17 E., Colfax County, New Mexico (Fig. 2). This location is about 3.2 mi (5.2 km) south of the New Mexico-Colorado state line, on privately owned land of the Vermejo Ranch. Vermejo Park is accessible by private roads from Raton, New Mexico, to the east; from Cimarron, New Mexico, to the south; and from Stonewall, Colorado, to the north. The area can also be reached from Torres, Colorado, about 8 mi (13 km) north of the state line; however, locked gates and general unavailability of keys discourage entry from this direction.

Previous Work
This section was examined by C. H. Dane and W. G. Pierce, of the U.S. Geological Survey, in the early 1930’s. Their intent was to relate these rocks to Cretaceous rocks to the east (Dane and others, 1937), and the section was not described in detail. A. A. Wanek, of the U.S. Geological Survey, mapped in this area in the 1950’s.

GEOLOGIC SETTING
The New Mexico portion of the Raton Basin is a broad asymmetric syncline; the gentle dips of its east flank contrast sharply with vertical to overturned beds along its west flank. The marine Cretaceous rocks form only a part of the total sedimentary section, which ranges in age from the Pennsylvanian and Permian Sangre de Cristo Formation to the Cretaceous and Paleocene Poison Canyon Formation. About 1.1 mi (1.8 km) west of the Gold Creek section, the oldest sedimentary rocks in the section are sharply overturned beneath Precambrian crystalline rocks that have been thrust faulted from the west. Nearly the entire lower part of the sedimentary section, including the lower half of the Pierre Shale, is overturned. The inverted character of the beds is apparent for more than 10 mi (16 km) to the southwest, to a point where the Dakota Sandstone is cut out beneath the thrust fault. At the Gold Creek exposure, the rocks dip about 55° to the west. Just 1.7 mi (2.7 km) east of the exposure, the rocks of the Trinidad Sandstone and of the Vermejo and Raton Formations dip about 25° to the east. An intervening broad valley, formed of thick Pierre Shale and characterized by limited exposures, reveals little about structural changes necessary to effect this major change of attitude. Even though the rocks at the Gold Creek exposure have been intensely...
deformed, the section from Dakota through Niobrara appears to be nearly complete.

**STRATIGRAPHY**

Because the strata are overturned, the meaning of terms such as "below" or "above" can be ambiguous and must be carefully chosen. For instance, "the lower part of the section" could be used to describe the lower part of the exposure, which is actually the upper part of the section stratigraphically. In the following description, we use these terms only in the stratigraphic sense. The units are described as they are encountered in the outcrop, from youngest to oldest, beginning with the Niobrara.

**Niobrara Formation**

The Niobrara Formation consists of two members along the eastern flank of the Sangre de Cristo Mountains: the Smoky Hill Shale Member and the Fort Hays Limestone Member. Detailed measurement began at the Fort Hays Limestone Member, but much of the Smoky Hill, which consists of fissile, medium- to dark-gray, hard calcareous shale that weathers silver gray, can be seen in scattered outcrops along the north valley wall of Gold Creek, beneath boulder debris from the valley wall of Gold Creek, beneath boulder debris from the overlying pediment. These beds strike N. 35° E. and are overturned from about 45° near the base to about 60°-70° near the top. An interval of calcareous sandstone occurs in the upper half of the member.

At the Gold Creek section, the Fort Hays Limestone Member crops out as distinct blocky beds of yellowish-gray weathering limestone separated by beds of gray calcareous shale. The member is about 8 ft (2 m) thick. The section described by Dane and others (1937) differs from ours in the lower part in that a zone 13 ft (4 m) thick, containing several bentonite beds, is included in the Fort Hays part of the Niobrara Formation. We include only the bentonites that occur in the limestone unit and assign the remainder of the zone to the Carlile Formation.

**Upper Black Shale Unit**

The upper part of the upper black shale unit consists of light-gray calcareous shale that includes several bentonite beds and grades into the overlying Fort Hays. The middle part contains darker, soft, less calcareous shale and a zone of grayish-brown septarian concretions. The lower part consists of dark, soft, noncalcareous flaky shale that contains zones of petrolierferous septarian limestone concretions and thin beds of fine-grained burrowed calcarenite. The lowest beds grade downward into the Juana Lopez Member. The 56 ft (18 m) thickness of this unit here is nearly twice that observed by Kauffman and others (1969) 50 mi (80 km) to the north in Huerfano Park.

**Juana Lopez Member**

The distinctive yellowish-brown fossiliferous, fetid Juana Lopez Member consists of an upper part, 20 ft (6 m) thick, of black calcareous shale that contains several thin beds of fine-grained calcarenite, and a lower part, 5 ft (1.5 m) thick, of fossiliferous calcarenite. The lower 5 ft unit contains limestone fragments, a few thin shale interbeds, and a zone of flattened limy concretions. *Lopha lugubris*, a distinctive fluted oyster (Fig. 3), occurs throughout and also forms a coquina layer at the base of the concretion zone.

**Blue Hill Shale Member**

The Blue Hill Shale Member can be divided into three parts: an upper unit, 18 ft (5.5 m) thick, of soft, fissile shale; a middle unit, 56 feet (17 m) thick, consisting of two thick concretionary zones separated by an interval of silty shale; and a lower unit, 63 ft (19 m) thick, made up of two shale intervals separated by a 7 ft (21 m) siltstone bed that contains thick limestone concretions. The thickness of the Blue Hill Shale Member at Gold Creek (135 ft or 42 m) is 21/2 times as great as that (55 ft or 17 m) described by Kauffman and others (1969) in western Huerfano Park. Kauffman and others noted that thinning of the Codell Sandstone Member commonly corresponds to thickening of the Blue Hill Shale Member. If the 70 ft (21 m) thick Codell Sandstone Member in Huerfano Park passes laterally into the Blue Hill Member at Gold Creek, this would help account for the extraordinarily thick Blue Hill Member at Gold Creek. At Gold Creek, the Codell Member is not designated separately, because it is represented by only about 3 ft (0.9 m) of siltstone, which is included in the top of the Blue Hill. There appears to have been little if any erosion beneath the disconformity reported at the base of the Juana Lopez Member.

**Fairport Member**

The Fairport Member at Gold Creek is 32 ft (10 m) of mostly very calcareous gray shale. The top of the member is placed at a thin, petrolierferous, bioclastic limestone that...
weathers dusky yellow to yellowish-orange and consists almost entirely of *Inoceramus* prisms and planktonic foraminifera. A dark yellowish-orange weathering bentonite bed about 1 ft (0.3 m) thick occurs approximately in the middle of the member. The lower few feet contain *Mytiloides labiatus* and grade down into shaly limestone that becomes thicker bedded in the lower 1 ft (0.3 m).

The 97 ft (30 m) thickness of the Fairport reported by Kauffman and others (1969) in western Huerfano Park probably includes rocks here described as the lower part of the Blue Hill Shale Member. The numerous bentonite beds and thin inoceramite beds in the lower part of the Fairport Member in Huerfano Park were not noted in the Gold Creek section, perhaps indicating north-south facies changes. Foraminifera indicate that the lower part of the Blue Hill Member at Gold Creek is equivalent to the upper part of the Fairport Member to the north.

**Greenhorn Formation**

The Greenhorn Formation is made up of three members in this area: the Bridge Creek Limestone Member (top), the Hartland Member and the Lincoln Member (bottom). The formation includes 130 ft (40 m) of strata, about the same as it does to the north in Huerfano Park (Kauffman and others, 1969).

**Bridge Creek Limestone Member**

The Bridge Creek Limestone Member consists of 16 ft (5 m) of gray, yellow weathering limestone in beds about 1 ft (0.3 m) thick or less and interbeds of shaly limestone, gray calcareous shale and bentonite as thick as 8 in. (20 cm). The limestones are hard, granular and petrolierous and contain abundant *Mytiloides labiatus*. In Huerfano Park, Kauffman and others (1969) reported abundant *Sciponoceras gracile*, but none was found at Gold Creek. In 1964 Cobban collected a large specimen of *Mammites nodosoides* at Gold Creek that is nearly identical to one found near Pueblo, Colorado (Fig. 4). Dane and others (1937) included 25 ft (8 m) of "hard gray limy shale" with 25 ft (8 m) of alternating limestone and shale in their Greenhorn Formation. This description would place the entire Fairport Member of the Carlile, as described here, in the Greenhorn.

**Hartland Member**

The Hartland Member, 52 ft (16 m) thick, consists predominantly of dark-gray brittle calcareous shale that weathers light-bluish-gray and forms a slope covered with flaky shale. Thin bentonite beds occur in the upper and lower parts. The Hartland is in sharp contact with the limestones of the overlying Bridge Creek Member but is gradational with the underlying Lincoln Member.

**Lincoln Member**

The Lincoln Member consists of flaky, calcareous and noncalcareous shale. The top is defined as a 6-12 in. (0.15-0.3 m) zone of limestone (calcarenites of Kauffman and others, 1969) in beds 2 to 3 in. (5 to 7 cm) thick. The limestones are unfossiliferous but quite pungent when freshly broken.

---

*Figure 3. Lopha lugubris. Note distinctive fluting around edge of shell. Fossils are approximately 1 in. (2.5 cm) in diameter.*

*Figure 4. Mammites nodosoides (Schlotheim) subsp. wingi Morrow. Side view of a large specimen, 30 cm maximum diameter, found 25.5 ft (7.7 m) above the base of the Bridge Creek Limestone Member at USGS locality D6149, Bogs Creek, west of Pueblo, Colorado, NW¼ sec. 1, T. 21 S., R. 66 W. (From Cobban and Scott, 1972).*
The calcarenite beds that define the base of the member elsewhere are evidently obscured beneath debris and soil, but a 1 ft (0.3 m) thick bentonite bed 62 ft (19 m) below the top is assumed to be the "X" bentonite marker bed of Kauffman and others (1969) and is taken to mark the base. Further excavation would probably uncover the calcarenite beds.

Graneros Shale

At Gold Creek, the 112 ft (34 m) thick Graneros Shale is mostly covered. However, scattered exposures allow at least partial examination of nearly the entire formation, and the three-part division described by Kauffman and others (1969) can be used here. The upper unnamed shale unit is roughly 80 ft (24 m) thick and consists mostly of soft, black, flaky, non-calcareous shale that contains a few thin silty zones and is calcareous in the lower part. Below the shale unit is a hard, non-calcareous, mottled gray and brown siltstone 6-12 in. (0.15-0.3 m) thick. The position of this siltstone bed corresponds to that of the calcareous concretion zone described by Dane, Pierce and Reeside (1937) 30-40 ft (9-12 m) above the base of the Graneros. This zone probably represents the Thatcher Limestone Member of the Graneros Shale. The 30 ft (9 m) lower shale unit is almost completely covered by debris from the cliffs at the ridge crest; however, roadcut exposures along the valley floor show this part of the formation to be mostly black silty shale with some thin beds of limestone and bentonite. Dane, Pierce and Reeside (1937) included the Lincoln Member and nearly all of the Hartland Member of the Greenhorn in their Graneros Shale, which explains why their Graneros was about 200 ft (60 m) thick.

Dakota Sandstone

The overturned Dakota Sandstone forms cliffs at the top of the Gold Creek exposure. The Dakota consists of light-gray to white quartzitic sandstone that is fine grained to silty and weathers to various shades of red, yellow and brown. Veinlets and seams of hard secondary silica occur along shear fractures in the sandstone.

MICROPALeONTOLOGY

Forty samples were collected for foraminifera from the stratigraphic interval between the base of the Greenhorn Formation and the lowermost part of the Niobrara Formation. This interval includes parts of two marine cycles of transgression and regression. The lower part of the greenhorn cycle, comprises the strata between the upper part of the Dakota Sandstone and the Codel Sandstone equivalent, here contained in the uppermost part of the Blue Hill Shale Member of the Carlile Formation. The upper cycle begins with the Juana Lopez Member of the Carlile Formation, and the transgressive portion of the cycle is recorded in succeeding strata throughout the lower part of the Niobrara Formation. The strata between the upper part of the Dakota and the lower part of the Niobrara represent the Cenomanian and Turonian Stages of the Cretaceous. The vertical changes in the foraminiferal faunas that occur throughout these strata record changes in depositional environments throughout the cycles as well as key evolutionary events in the foraminiferal succession.

The Graneros Shale was not sampled at Gold Creek. In areas to the north, the Graneros contains a foraminiferal fauna of dominantly arenaceous species that have been interpreted as products of a somewhat brackish sea which had limited circu-

lation but was connected with normal open-marine environments to the south (Eicher, 1965, 1966). The ensuing change from arenaceous benthic to planktonic foraminiferal faunas approximately at the base of the Greenhorn Formation signifies the opening of the Western Interior seaway to major open ocean currents.

The solely planktonic foraminiferal fauna in the 114 ft (35 m) of the lower part of the Greenhorn (Lincoln and Hartland Members) includes abundant specimens of Hedbergella delrioensis, H. planispira, H. amabilis, H. portsdowensis, Heterohelix globulosa and occasional specimens of Rotalipora greenhornensis, Praeglobalotrunca cana stephani, P. delrioensis, Globigerinelloides bentonensis and Clavihedbergella simplex.

The basal 5 ft (1.5 m) of the overlying Bridge Creek Limestone Member contains, in addition to the planktonic species that occur in the Hartland, Rotalipora cushmani and numerous benthic species including Lingulogavelinella stigerinoides, Dentalina basiplanata, Neobulimina albertensis and Gavelinella dakotensis.

The change upward from a solely planktonic foraminiferal assemblage in the Hartland Member to a fauna consisting of numerous benthic as well as planktonic species in the Bridge Creek may be observed in strata of this age throughout a large area in the Western Interior (Eicher and Worstell, 1970). This change is interpreted to signify the passage from anaerobic to aerobic conditions on the sea floor in the Western Interior at approximately the end of the Cenomanian Stage.

Samples from the overlying 32 ft (10 m) thick Fairport Member of the Carlile Shale contain Praeglobalotrunca cana stephani and the species of Hedbergella and Heterohelix that occur in the strata below. In addition, this interval contains the planktonic species Globigerinelloides caseyi, Clavihedbergella subdigitata, Lunatricella spinifera, Marginotruncana roddai and Whiteinella aprica. The most common co-occurring benthic species are Neobulimina albertensis, Gavelinella dakotensis and Lenticulina gaultina. Throughout much of Kansas and eastern Colorado, these strata, like those of the Hartland Member below, lack benthic foraminifera, signifying a temporary return to anaerobic bottom conditions (Eicher and Worstell, 1970). At Gold Creek, however, the sea floor was sufficiently oxygenated to support a benthic fauna all during deposition of the Fairport Member.

Throughout the lower 47 ft (14 m) of the overlying Blue Hill Shale Member, planktonic and calcareous benthic foraminifera are sparse and tiny. Upward they become increasingly rare and at the top of this interval disappear altogether. Samples from the succeeding 35 ft (11 m) of Blue Hill Member are barren; the overlying 56 ft (17 m) of the member contains an exclusively arenaceous fauna. The presence of planktonic and calcareous benthic species in the lower 47 ft (14 m) of the member at this locality strongly suggests that this interval is equivalent to the upper part of the Fairport Member in the Arkansas Valley, where the contact between calcareous faunas below and arenaceous faunas above occurs at the Fairport-Blue Hill contact.

The decrease upward in number and size of calcareous foraminifera in the lower part of the Blue Hill Member records a reduction in the extent of the sea and accompanying limiting environmental conditions. The barren interval probably represents a time when the sea floor was too anaerobic to support a benthic fauna and the surface waters were too brackish to support a planktonic fauna. The numerous arenaceous species in the
upper part of the Blue Hill Member indicate a pronounced change in environmental conditions from those below. This may have included a substantial lowering of salinity or an increase of turbidity of the water or both. The siltstone beds at the top of the member indicate shallow water and the culmination of the Greenhorn cycle.

The Niobrara cycle begins with the calcarenites of the Juana Lopez Member. Foraminifera are absent from the lowermost sample and appear increasingly in numbers and in variety upward. The upper part of the Juana Lopez and lower 30 ft (9 m) of the upper black shale unit of the Carlile Formation contain planktonic specimens and a few common benthic species, chiefly Gavelinella kansasensis and Neobulimina albertensis. Throughout the remainder of the upper black shale unit, planktonic foraminifera become strikingly abundant and they increase in diversity upward into the lower part of the Niobrara Formation. Benthic species, likewise, increase in diversity upward. The uppermost sample of the upper black shale and the lowermost part of the Niobrara contain abundant species of Hedbergella, Heterohelix, Archegobiogerina, Marginotruncana and Globotruncana, indicating the arrival of open-ocean conditions. These planktonic species require additional study. Initial interpretation suggests a Coniacian Age for these strata. Accompanying benthic species are those typical of the Niobrara elsewhere in the Western Interior.

SECTION OF UPPER CRETACEOUS ROCKS MEASURED IN CANYON OF GOLD CREEK NEAR PENAFLOR BENEATH OVERTURNED DAKOTA SANDSTONE CLIFF

[Sec. 4, T. 31 N., R. 17 E. (estimated, area unsurveyed); measured by C. L. Pillmore, D. L. Eicher, P. J. Varney, and C. Porter, July 20, 1966]

Niobrara Formation (part)

<table>
<thead>
<tr>
<th>Fort Hays Limestone Member</th>
<th>Thickness in Ft</th>
<th>in.</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Occurs as four distinct beds of blocky yellow weathering limestone with interbeds of calcareous, light-gray, platy shale. Limestone, medium-gray; weathers yellowish-gray to grayish-orange; fine grained; single bed, blocky; irregularly shaped masses of marcasite altering to limonite; some scattered fossil imprints and fragments</td>
<td>6</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>Shale, light-gray; weathers light-gray; flaky, very calcareous, soft</td>
<td>6</td>
<td>.15</td>
<td></td>
</tr>
<tr>
<td>Limestone, as above, very fossiliferous; contains poorly preserved, thin shell fragments of oysters and clams</td>
<td>10</td>
<td>.25</td>
<td></td>
</tr>
<tr>
<td>Shale, as above</td>
<td>18</td>
<td>.46</td>
<td></td>
</tr>
<tr>
<td>Limestone, as above—contains Inoceramus; blocky</td>
<td>18</td>
<td>.46</td>
<td></td>
</tr>
<tr>
<td>Shale, as above</td>
<td>5</td>
<td>.13</td>
<td></td>
</tr>
<tr>
<td>Limestone, as above</td>
<td>11</td>
<td>.28</td>
<td></td>
</tr>
<tr>
<td>Bentonite, soft; weathers pale grayish-orange to dark yellowish-orange. Grades into calcareous shale in upper 3 in. (7 cm)</td>
<td>10</td>
<td>.25</td>
<td></td>
</tr>
<tr>
<td>Limestone, shaly, light-gray; breaks into irregularly shaped pieces</td>
<td>6</td>
<td>.15</td>
<td></td>
</tr>
<tr>
<td>Total thickness, Fort Hays Limestone Member</td>
<td>7</td>
<td>6</td>
<td>2.28</td>
</tr>
</tbody>
</table>

Carlile Formation

<table>
<thead>
<tr>
<th>Upper black shale unit</th>
<th>Thickness in Ft</th>
<th>in.</th>
<th>m</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Shale, medium-gray; weathers light-gray; very calcareous to limy in upper 5 ft (1.5 m). Below top 5 ft (1.5 m) shale is darker, less calcareous, and soft, contains prints of Inoceramus perplexus. Eighteen ft (5.5 m) below top is zone of light grayish-brown septarian concretions, 3-12 in. (8-30 cm) thick and about 4 ft (1.2 m) in diameter that contain Inoceramus fragments; thin bentonitic shale 12 ft (3.7 m) below top and bentonite beds 4 in. (10 cm) and 3 in. (8 cm) thick occur at 5.5 (1.7 m) and 6.5 ft (2 m) below top</td>
<td>28</td>
<td>8.53</td>
<td></td>
</tr>
<tr>
<td>14. Shale, as above, but contains zones of septarian limestone concretions and numerous silty beds. Concretions are lenticular, about 6-8 in. (15-20 cm) thick and 2-3 ft (0.6-0.9 m) long, and petroleumiferous; contain fossil fragments. Calcarenites show traces of burrowing animals. Shale is soft, flaky, and locally noncalcareous</td>
<td>30</td>
<td>9.14</td>
<td></td>
</tr>
<tr>
<td>Total thickness, upper black shale unit</td>
<td>58</td>
<td>17.68</td>
<td></td>
</tr>
</tbody>
</table>

Juana Lopez Member

| Shale, black, calcareous, with layers of very fine-grained to fine-grained calcarenite. Top of unit has fossiliferous calcareous siltstone concretions as thick as 12 in. (30 cm); 17 ft (5 m) below top is 2 in. (5 cm) bentonite bed | 20 | 6.09 |
| Calcarenite, fine-grained; composed mostly of shell and limestone fragments; hard, sandy petroleumiferous concretion zones; shale interbeds; base of concretion zone is coquina of pelecypod fragments (Lopha lugubris). Irregularly bedded; cone-in-cone structure; distinct yellowish-orange to yellowish-brown. Lower 1-1.5 ft (0.3-0.45 m) is mostly shale with 3-4 in. (8-10 cm) silty concretions at base | 5 | 1.52 |
| Total thickness, Juana Lopez Member | 25 | 7.62 |

Blue Hill Shale Member

| Upper unit: Shale, fissile, noncalcareous, soft, slightly silty, medium-dark-gray; weathers yellowish-brown on bedding surfaces; top 3 ft (0.9 m) is silstone (probable Codell equivalent); grades down to dark shale | 18 | 5.48 |
| Middle unit: Shale and concretionary zones, divisible into three zones: | | |
| Upper concretionary zone. Brownish-gray to dark yellowish-orange weathering, medium gray septarian limestone concretions with veinlets of brown calcite; cone-in-cone structures common; lenticular; 3-5 ft (0.9-1.5 m) in diameter; form resistant ledges in shale slope | 14 ft (4.27 m) | |
| Silty zone. Silty shale with brownish weathering beds as thick as 7 in. (18 cm) that have distinct burrow markings as much as 1 in. (2.5 cm) in diameter. 20 ft (6.09 m) | |
| Lower concretion zone. Large lenticular concretions of brown weathering limestone as much as 5 ft (1.5 m) in diameter with interbeds of silty to slightly silty shale | 22 ft (6.70 m) | |
| Thickness of middle unit | 56 | 17.07 |
9. Lower unit: Shale and siltstone; divisible into three parts:
Upper shale part, medium dark-gray; weathered medium yellowish-brown to grayish-brown; soft, fissile; slightly silty below ... 25 ft (7.62 m) thick; cone-in-cone structures near top, noncalcareous; contains large, irregular to lenticular limestone concretions as much as 5 ft (1.5 m) thick ... 7 ft (2.13 m) 
Lower shale part, black, soft, fissile; weathers to gray, flaky slope; transition zone to Fairport Member below; lower 18 ft (5.5 m) is calcareous, becoming limy in lower 6 ft (1.8 m) ... 31 ft (9.45 m) thick 
Total thickness of lower unit 63 19.2
Shale Member 137 41.76
Fairport Member
8. Shale, very calcareous to limy, medium gray; weathers light gray; contains thin, very calcareous laminae that weather yellowish-brown. At top of unit is petroliferous bioclastic limestone 2-4 in. (5-10 cm) thick, composed mainly of Inoceramus prisms and Globigerina forams that weathers dusty-yellow to grayish-brown; and dark, dull yellow-orange; shales become progressively more calcareous downward to shaly limestone in bottom few feet; 17 ft (5 m) below top is 1 ft (0.3 m) thick, dark yellowish-orange-weathering bentonite; bottom 4 ft (1.2 m) of member is shaly limestone becoming thicker bedded in lower 1 ft (0.3 m), contains Mysioides labiatus 32 9.75
Total thickness, Fairport Member 32 9.75
Total thickness of Carlile Formation 252 76.80
Greenhorn Formation
Bridge Creek Limestone Member
7. Limestone, granular, petroliferous, fossiliferous; weathers light gray to grayish-yellow and orange; in beds about 1 ft (0.3 m) thick with interbeds of limy shale and bentonite as follows:
Interbedded limestone and shale 
Limestone ............................................ 3 0.91
Bentonite, irregular; may be thinned ... 2 0.05
Interbedded limestone and shaly limestone 7 2.13
Bentonite 8 0.20
Calcareous shale, light-gray, lenticular 
Limestone, dense, dark-gray; weathers gray 6 0.15
Calcareous shale, as above 6 0.15
Bentonite 8 0.20
Calcareous shale, as above 2 0.05
Limestones, as above 6 0.15
Calcareous shale, as above 1 0.5
Limestone, as above 1 0.30
Fossils include Mammalites and Mytiloides labiatus
Total thickness, Bridge Creek Limestone Member 16 6 5.02

Hartland Member
6. Shale, calcareous to very calcareous, hard, brittle, dark-gray; weathers light-gray to light-gray and forms flaky slope; a few inoceramus prisms and shell fragments in upper few limestones and thin bentonite beds; scattered exposures below upper 20 ft (6 m); 45 ft (14 m) below top, thin zone of bentonite shale 2-3 in. (5.8 cm) thick 
Total thickness, Hartland Member 52 15.85

Lincoln Member
5. At top, 6-12 in. (15-30 cm) zone of bedded limestone 2-3 in. (5-8 cm) thick; pungent, petroliferous, no fossils. About 10 ft (3 m) above base is zone of black, flaky, noncalcareous shale about 4 ft (1.2 m) thick; base of unit is dark-gray calcareous shale as in Hartland Member above 
Total thickness, Lincoln Member 61 18.59
Total thickness, Greenhorn Formation 129 39.47
Graneros Shale
4. Partly covered—scattered exposures; 12 in. (30 cm) thick “X” bentonite at top of unit; mostly black, silty to slightly silty shale, flaky, noncalcareous, soft; a few thin silty zones 13 3.96
3. Mostly covered—scattered exposures indicate dark-gray to black, calcareous to noncalcareous, silty to slightly silty shale; thin shaly limestone beds; noncalcareous, hard, mottled gray and brown silty bed at 68 ft (21 m) below top 
Total thickness, Graneros Shale 100 30.48

Dakota Sandstone
1. Sandstone, light-gray; weathers shades of red, yellow, and brown; fine-grained to very fine grained with ridges and veinlets of hard silica, crossbedded, 3 ft (0.9 m) below top is zone of granules and pebbles of chert and quartzite 20 6.09

REFERENCE