The Mississippian System of southwestern New Mexico and southeastern Arizona

Augustus K. Armstrong and B. L. Mamet

in:

This is one of many related papers that were included in the 1978 NMGS Fall Field Conference Guidebook.

Annual NMGS Fall Field Conference Guidebooks

Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico.

Free Downloads

NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, and other selected content are available only in print for recent guidebooks.

Copyright Information

Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. No material from the NMGS website, or printed and electronic publications, may be reprinted or redistributed without NMGS permission. Contact us for permission to reprint portions of any of our publications.

One printed copy of any materials from the NMGS website or our print and electronic publications may be made for individual use without our permission. Teachers and students may make unlimited copies for educational use. Any other use of these materials requires explicit permission.
This page is intentionally left blank to maintain order of facing pages.
THE MISSISSIPPIAN SYSTEM OF SOUTHWESTERN NEW MEXICO AND SOUTHEASTERN ARIZONA

AUGUSTUS K. ARMSTRONG
U.S. Geological Survey
Menlo Park, California

and

BERNARD L. MAMET
Université de Montreal
Montreal, Canada

INTRODUCTION

This report focuses on the Mississippian rocks of southwestern New Mexico and southeastern Arizona and, in particular, the Pedregosa basin. Greenwood and others (1977) give the geologic history of this basin and summarize its petroleum potential and stratigraphy. The data for northern and central Arizona are taken from McKee and Gutschick (1969) and McKee and Crosby (1975). A detailed description of the Mississippian rocks of north and north-central New Mexico is given by Armstrong and Mamet (1974, 1976, 1977a). This report is preliminary, and detailed analysis of the microfacies, microfossils, and diagensis of the carbonate rocks is in preparation. Mamet's microfossil zonations, as defined in Sando and others (1969), Mamet (1976), and Mamet (in Armstrong and Mamet, 1977b), are used in this report. The carbonate rock classification used is Dunham's (1962).

PREVIOUS WORK

Mississippian rocks at Lake Valley, New Mexico (fig. 1, loc. 44), were first described by White (1881). Cope (1882a, b) referred to the rocks at Lake Valley and proposed the name Lake Valley Limestone.

Herrick (1904) used the name Kelly Limestone for the Mississippian rocks of the Magdalena mining district. In two papers Laudon and Bowsher (1941, 1949) divided the Mississippian System of south-central New Mexico into a series of five formations and the Lake Valley Limestone into six members (fig. 2). They used the name Caballero Formation for rocks in the Sacramento and San Andres mountains and at Lake Valley, New Mexico, that are mostly of Kinderhookian age, and the Las Cruces and Rancheria formations for rocks in the Franklin Mountains of west Texas and the southern San Andres and Sacramento mountains of New Mexico that are mostly Meramecian age. Beebe (1920, p. 8) designated all the rocks between the Silurian and the Pennsylvanian systems in the Hueco Mountains of west Texas as the Helms Formation.

Laudon and Bowsher (1941, 1949) gave macrofaunal lists for the Lake Valley, Rancheria and Helms Formations.

The Escabrosa Limestone of Mississippian age was named by Girty (in Ransome, 1904) from the lower Carboniferous section in the Escabrosa Cliffs, west of Bisbee, Cochise County, southeastern Arizona. Huddle and Dobrovolny (1952) made a detailed study of the Mississippian strata of central Arizona that included the northern parts of the Escabrosa Limestone and presented an excellent description of the upper contact and effects of solution on the Redwall and Escabrosa Limestones. Gilluly and others (1954) described the late Paleozoic rocks, which included the Mississippian System of Cochise County, Arizona. The Escabrosa Limestone in the Chiricahua Mountains of southeastern Arizona and southwestern New Mexico was elevated to the Escabrosa Group by Armstrong (1962, p. 5) and divided into two newly named formations: the Keating Formation with two members, A and B; and the overlying Hachita Formation (figs. 2, 9). This nomenclature was extended into Luna, Hidalgo and Grant Counties, southwestern New Mexico, and the Chiricahua Mountains of Arizona (fig. 8). The two informal members of the Keating Formation were named the Bugle and Witch members by Armstrong and Mamet (in press). The brachiopod and coral faunas for the Escabrosa Group are illustrated and described by Armstrong (1962).

The Paradise Formation was named by Stoyanow (1926) for outcrops a few miles east of the old mining camp of Paradise, on the east side of the Chiricahua Mountains. The macrofauna of the Paradise Formation in the Chiricahua Mountains was studied and described by Hernon (1935). Zeller (1965) gives M. K. Elias' macrofossil lists of the Paradise Formation in the Big Hatchet Mountains.

GEOLOGIC SETTING

Lower boundary of the Mississippian

Leadville Limestone of the San Juan Mountains, Colorado, and in the subsurface of San Juan County, New Mexico (fig. 2), has at its base a Tournaisian (Osage) microfossil assemblage of Zone 9 (Armstrong and Mamet, 1976, 1977a), and the underlying Ouray Limestone contains a well-defined fauna of Upper Devonian brachiopods near its top (Armstrong and Mamet, 1976). In north-central New Mexico Mississippian rocks of Zone 9 age unconformably overlie Precambrian metamorphic and igneous rocks (fig. 2). In west-central New Mexico Zone 8 rocks overlie the Precambrian. In the northern Sacramento Mountains rocks of pre-Zone 7 overlie shale and limestone of Late Devonian age. In the northern San Andres Mountains Tournaisian age rocks rest unconformably on Upper Devonian shale and marls; in the southern part of the range, pre-Zone 7 beds unconformably overlie Upper Devonian strata. In the Mimbres Range and Silver City region, pre-Zone 7 rocks unconformably overlie Upper Devonian Percha Shale. In the southwestern part of New Mexico and southeastern Arizona pre-Zone 7 carbonate rocks unconformably overlie Upper Devonian sedimentary rocks (figs. 2-5).

Units overlying the Mississippian

Pennsylvanian rocks unconformably overlie the Mississippian at most places in New Mexico and southeastern Arizona.
In the mountains of north-central New Mexico, the Mississippian Arroyo Penasco Group or the Log Springs Formation are overlain by Pennsylvanian strata (Armstrong and Mamet, 1974, 1977a). During the hiatus Mississippian rocks representing Zones 17 to 20 (Chesterian to Morrowan) time were eroded. In west-central New Mexico in the Lemitar, Ladron and Magdalena Mountains the Mississippian carbonate rocks are unconformably overlain by nearshore elastic rocks of the Pennsylvanian Sandia Formation of the Magdalena Group (figs. 2, 3) (Armstrong, 1958).

Pennsylvanian strata in northern, central and southern New Mexico and southwestern Arizona truncate Mississippian sedimentary rocks of Namurian, Visean and Tournaisian (Chesterian to Osagean) age. In the Big Hatchet Mountains of New Mexico and the Pedregosa Mountains of southeastern Arizona the contact between the Paradise Formation and the overlying Pennsylvanian Horquilla Limestone is at the Zone 19/20 boundary, and a hiatus, if present, must be short. In the Florida Mountains, the Mississippian starved-basin carbonate rocks of the Rancheria Formation are unconformably overlain by Permian (Wolfcampian) carbonate rocks. The Mississippian Escabrosa Limestone to the west in the Papago Indian Reservation in the Waterman, Slate and Vekol mountains is from 90-130 m thick, is predominately dolomite, is Tournaisian (Osagean) in age and was extensively eroded before Pennsylvanian carbonate sedimentation. The upper half of the section in the Slate and Vekol mountains contains well-developed subtidal, intertidal and supratidal sedimentary features such as abundant algal stromatolites, mud cracks, interformational conglomerates, birdseye structures and abundant dolomite pseudomorphs and vugs after anhydrite and gypsum.

Structural Events During the Mississippian

A generalized isopach map of Mississippian rocks is shown in Figure 1 and is based upon Mississippian remnants of extensive sheets that were dissected and beveled in northern and

Figure 1. Index map of western New Mexico and eastern Arizona showing location of Mississippian sections, Mississippian isopachs and paleogeography in pre-Pennsylvanian time, and location of correlation charts shown in Figures 3-5.
central New Mexico and west-central and north-central Arizona during Namurian (Chesterian) time. Large areas were eroded on structurally active features, such as the Zuni-Defiance uplift, Pedernal uplift and Florida uplift, in Pennsylvanian and Permian time. In the Pedregosa basin and adjacent areas the isopach map may not show a correct representation of the original basin of Mississippian deposition. Purves' (1976) stratotectonic map of the Mississippian System of Arizona depicts a segmentation of the state into geologically unique, laterally offset blocks bounded by northeast- and northwest-trending faults. He describes the chronology of fracture systems and infers that they are related to possible spreading ridges and motion of the North American plate.

Marine encroachment began in early Tournaisian (pre-Zone 7) time in the Pedregosa basin and southern parts of the region, forming the Escabrosa carbonate platform (figs. 6-9). By the end of Tournaisian (Osagean) time, epicontinental seas covered northern and eastern Arizona and New Mexico. Two low islands may have existed, the Zuni highlands and remnants of the transcontinental arch, the Pedernal uplift (fig. 1). The Espiritu Santo Formation is composed of carbonate tidal deposits in the Sangre de Cristo, Sandia, Nacimiento and San Pedro mountains of north-central New Mexico (Armstrong, 1967; Armstrong and Mamet, 1977a; Vaughan and others, 1977). The Leadville Limestone is the time-stratigraphic, shallow-water equivalent in Colorado and the San Juan Basin of northwestern New Mexico and is an eastern extension of the lower part of the Redwall Limestone (Horseshoe Mesa Member) of Arizona (McKee and Gutschick, 1969). The end of Tournaisian (Osagean) time is marked by marine regression, regional uplift and extensive erosion of the Tournaisian (Osagean) carbonates (figs. 2-5).

The geographic and stratigraphic extent of this hiatus at the end of the Tournaisian (Osagean) is shown in Figures 2-5. A major regional marine transgression occurred in middle Visean (Meramedian) and is represented by the massive encrinites of the Hachita Formation in the southwestern part of New Mexico and the upper parts of Escabrosa Limestone of southwestern Arizona and the Horseshoe Mesa Member of the Redwall Limestone of northern Arizona (figs. 8, 9). The middle Visean in New Mexico is represented by the deeper water carbonates of the Rancheria Formation in the southern San Andres and Sacramento mountains and in north-central New Mexico by the shallower-water Turquillo Member (Meramedian) of the Tererro Formation. Late Visean carbonate rocks of Zone 16i (Chesterian) are also widely distributed in disjunct outcrops. These are the Cowles Member of the Tererro Formation, the upper part of the Rancheria Formation in New Mexico and west Texas, and the lower part of the Paradise Formation in the Pedregosa basin.

Marine sedimentation ceased in northern and central New Mexico at the end of Zone 16i time. In southwestern New Mexico and southeastern Arizona marine sedimentation continued through Zone 19. The Paradise Formation (figs. 2, 3-5) is a series of shallow-water lime mudstone-foraminifera-echinoderm-bryozoan-brachiopod molluscan wackestone to packstone and nearshore oolitic carbonates and plant-bearing cross-bedded sandstone and siltstone. The Helms Formation to the east appears to be a deeper water facies equivalent of the Paradise Formation (figs. 2, 3).
The fauna and lithology of the Mississippian carbonate rocks in the San Andres and Sacramento mountains of south-central New Mexico are well described. The first modern studies of the Mississippian of the Sacramento and San Andres mountains were by Laudon and Bowsher (1941, 1949) on the stratigraphy and megafaunas of the Mississippian Caballero and Lake Valley Formations and the Lake Valley Formation bioherms. They described the wedge-on-wedge relations of these Lower Mississippian strata to the Upper Mississippian Rancheria and Helms Formations. Pray (1958) gives a detailed petrographic and microfacies analysis of the Lake Valley Formation bioherms.

A detailed account of the complex nature of the stratigraphic and tectonic implications of the Late Mississippian Rancheria and Helms Formations to the Lower Mississippian shelf carbonates of the Lake Valley Limestone in south-central New Mexico and west Texas is given in Wilson (1969, 1971, 1975) and Kottlowski (1970).

Meyers' (1974, 1975) and Meyers and James' (1978) reports on the Mississippian sediments and diagenesis in the Sacramento Mountains are based on petrographic, stable isotope and cathodo-luminescence studies of the carbonate sedimentary rocks, their cementation, and cherts. Meyers demonstrated that the non-ferroan calcite cement zones in the Lake Valley Limestone reflect ancient phreatic lenses established during pre-Visean (pre-Meramec) and pre-Bashkirian (pre-Morrowan) periods when meteoric waters cemented these rocks below unconformities.

Investigation of the basin margin sediments of the Visean and Namurian (Meramecian) Rancheria Formation in the Sacramento and Franklin Mountains by Yurewicz (1973, 1977) showed that the Rancheria Formation is younger than the Lake Valley Limestone and is separated from it by an unconformity.

Study of the conodont faunas of the Lake Valley, Rancheria and Helms Formations by Lane (1974, 1975, fig. 6) conclusively demonstrates that the Visean and Namurian Rancheria Formation of the Franklin Mountains of east Texas and the southern San Andres and Sacramento mountains of New Mexico has a wedge-on-wedge relation separated by an unconformity from the Tournaisian (Osagean) shelf carbonates and bioherms of the Lake Valley Limestone.

Conodont samples were collected with the foraminiferal samples from the Florida Mountains section of the Rancheria
Figure 4. Regional biostratigraphic and lithologic correlation (B-B’) for Mississippian strata from the Big Hatchet Mountains, to Bear Mountain and the Mimbres Range, southwestern New Mexico.
Figure 5. Regional biostratigraphic and lithologic correlation (C-C') for the Mississippian strata from Blue Mountain, Chiricahua Mountains, to the Dos Cabezas Mountains, Gunnison Hills; Ajax Hill, Tombstone Hills, Whetstone Mountains, Johnny Lyon Hills, Tornado Peak, Superior, and to the Redwall Limestone at Black River, Arizona.

Figure 6. Southeastern side of the Whetstone Mountains, north side of Dry Canyon, showing the Cambrian Abrigo Limestone, Devonian Martin Formation, and the massive cliffs of the lower half of the Escabrosa Limestone.
Formation. Mamet found foraminifers of Zone 14/15 Meramecian *Brusnia* facies from 12 m above the base to the top of the section beneath Wolfcampian limestones. John Repetski (U.S.G.S., Washington, D.C., written commun., 1978) found Meramecian-age conodonts in the *Brusnia* facies. He reported that the following conodonts were recovered in a sample 1.5 m above the base of the Rancheria section:

- "*Gnathodus* sp. (juvenilê?)"
- *Polygnathus communis* Branson and Mehl
- *Spaethognathus cf. S. cristatus* Youngquist and Miller
- *Spaethognathus* sp.
- ozarkodiniform element
- neoprolioniodiform (N) elements
- synprolioniodiform (N) elements
- hindeodeliform (A1) elements
- lignodiniform (A2) element
- hibbardelliform (A3) elements

Age: Mississippian, probably Osaganian."

Repetski stated:

Polygnathus communis has a known range of the upper two-thirds of the Famennian (Upper Devonian) through the lower half of the Osaganian, Burton (1964) ... reported (p. 75) finding *P. communis* through the Rancheria Formation in the southern Sacramento Mountains of New Mexico, and he referred to the Rancheria Fm. to the Meramecian. However, on another page (p. 73) ... [Burton] stated that the faunas from the Rancheria Fm. "are small and reworked and thus are of limited stratigraphic value." The specimens [from the Florida Mountains] in sample 72N-54 do not appear to have suffered reworking.

Repetski recovered the following conodonts from a sample 3 m above the base of the Rancheria Formation in the Florida Mountains:

- "*Cavusgnathus* sp.
- *Gnathodus texanus* Roundy
- *Gnathodus* sp. (fragments)
- *Spaethognathus* sp. (frag.)
- *Lignodiniform (A2)* elements
- ionchoniodiform elements
- neoprolioniodiform (N) element

Repetski reported the age to be Meramecian and said "*Cavusgnathus* first appears in the Meramecian and ranges into the Chesterian. *Gnathodus texanus* ranges from upper Osaganian into the lower Chesterian."

"The *Cavusgnathus* specimens are broken, as are the specimens of *Gnathodus* sp. The latter have widely-expanded outer lobes, similar to *G. bilineatus* (Roundy). The *G. texanus* collection shows a wide range of variation in platform ornamentation."

The Visean and Namurian (Zones 14-19, Meramecian and Chesterian) Rancheria and Helms Formations of west Texas and the truncated Rancheria Formation outcrops in the Florida Mountains, New Mexico, also appear to have a wedge-on-wedge relation separated by a post-Zone 9 pre-Zone 14 unconformity from the Tournaisian Keating Formation of southwestern New Mexico (fig. 5).

Location of outcrop sections used in this report can be found in the following publications:

1-20. Armstrong (1967); Armstrong and Mamet (1974); Baltz and Read (1960); Fitzsimmons and others (1956); the areas are the San Pedro, Nacimiento, Sangre de Cristo, Sandia, Manzano and Jemez mountains, New Mexico.

25-33. Laudon and Bowsher (1949), Kottlowski and others (1956), Kottlowski (1975); San Andres Mountains, New Mexico.

37-38. Laudon and Bowsher (1949); Mimbres and Cooks ranges, Silver City area, New Mexico.

49-52. Armstrong (1952, 1970); Peloncillo, Big Hatchet and Florida mountains, Klondike Hills, New Mexico.

53, 54. Laudon and Bowsher (1949), Lane (1974, 1975); Vinton Canyon, Franklin Mountains, and Hueco mountains, west Texas.

55. Epis (1956); Pedregosa Mountains, Arizona.

56, 58. Sabins (1957); Chiricahua Mountains, Arizona.

57. Lindgren (1905); Clifton-Morenci district, Arizona.

66-68. McClymonds (1959a, b).

REFERENCES

1882b, Geologic age of the Lake Valley mines of New Mexico: Eng. and Mining Jour., v. 34, p. 214.

Greenwood, E., Kottlowski, F. E., and Thompson, S., III, 1977,