Hydrothermal resources of western Colorado

Richard H. Pearl, 1981, pp. 333-336


This is one of many related papers that were included in the 1981 NMGS Fall Field Conference Guidebook.

Annual NMGS Fall Field Conference Guidebooks

Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico.

Free Downloads

NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks.

Copyright Information

Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. No material from the NMGS website, or printed and electronic publications, may be reprinted or redistributed without NMGS permission. Contact us for permission to reprint portions of any of our publications.

One printed copy of any materials from the NMGS website or our print and electronic publications may be made for individual use without our permission. Teachers and students may make unlimited copies for educational use. Any other use of these materials requires explicit permission.
This page is intentionally left blank to maintain order of facing pages.
INTRODUCTION

In Colorado west of the Continental Divide there are 34 thermal areas containing approximately 103 thermal springs and wells (fig. 1). The surface temperatures of the waters in these areas range from a low of 23°C to a high of 80°C. The temperatures, discharge, total dissolved solids and estimated reservoir temperatures of the thermal systems of western Colorado are summarized in Table 1.

The surface temperatures of the thermal waters found in western Colorado are not excessively hot as contrasted to such higher temperature geothermal systems as hot dry rock, geopressured, and dry steam found elsewhere in the western United States. Consequently the geothermal resources of Colorado are classified as hot-water hydrothermal resources.

The hydrogeological conditions and resources of the hydrothermal systems of western Colorado have been discussed by numerous authors. For a complete listing of all authors who have written on the thermal springs of western Colorado the reader is referred to the references at the end of this paper.

With one exception, Routt Hot Springs, north of Steamboat Springs, all thermal areas in western Colorado are geologically associated with sedimentary rocks. The geological conditions of the thermal areas vary from the relatively simple structural conditions at South Canyon Hot Springs, west of Glenwood Springs and Pagosa Springs in southwestern Colorado to the highly complex structural environment which exists at Rico and Ouray in southwestern Colorado. Evaluation of the geological conditions of each thermal area has shown that all thermal waters are associated with faults and in several instances the springs are located at the intersection of two faults. This is in agreement with geological controls of most thermal systems throughout the world.

The Colorado Geological Survey, with U.S. Department of Energy funding, is currently engaged in a limited exploration program to evaluate the following resource areas in western Colorado: Steamboat-Routt Hot Springs, Hot Sulphur Springs, Waunita Hot Springs, Cement Creek-Ranger Hot Springs, Ouray, the Animas Valley north of Durango and Wagon Wheel Gap Hot Springs. Upon completion of this program in 1982, reports will be available to interested parties, which will, as accurately as possible, depict the geological and hydrogeological characteristics of each system.

USES OF THERMAL WATERS

For many years the thermal waters of western Colorado have been used for a variety of purposes. For example, thermal waters have been used for space heating at Pagosa Springs since the turn of the century; however, the main use of thermal waters has been for recreation and medicinal purposes at Juniper Hot Springs, Steamboat Springs, Hot Sulphur Springs, Waunita Hot Springs, Cebolla Hot Springs, Ouray, Orvis Hot Springs, Lemon Hot Springs, Dunton, Tripp-Trimble Hot Springs, and Wagon Wheel Gap Hot Springs.

As part of the Colorado geothermal resource assessment program the author (Pearl, 1979) attempted to estimate the size and energy contained in each thermal system in western Colorado. To make these calculations some basic assumptions about the reservoir depth, structural controls, and size of the thermal reservoir were made. These calculations showed that the energy content of the thermal systems ranged from a low of 2.1 x 10¹² B.T.U.'s of thermal energy at South Canyon Hot Springs to a high of 1.43 x 10¹⁵ B.T.U.'s of thermal energy at Wagon Wheel Gap Hot Springs. The total amount of thermal energy estimated to be contained in all the thermal systems of western Colorado ranges from 1.34 x 10¹⁰ to 3.41 x 10¹⁰ B.T.U.'s (Pearl, 1979).

Earlier (Barrett and Pearl, 1978), using mathematical geothermometer models, calculated the estimated reservoir temperatures of the individual thermal systems of western Colorado. Their calculations indicate that the estimated temperatures range from a low of 20°C to a high of 225°C (table 1). These are not exceptionally high temperatures; consequently it is projected that the ultimate use of the thermal waters will be for direct application purposes. There may be several exceptions to this. For those areas where the estimated reservoir temperatures range between

*Prepared in cooperation with the U.S. Dept. of Energy under Contract No. DE-AS07-77ET28365
150°C and 225°C, the resource could be used for the generation of electricity. Several thermal areas in western Colorado are currently being evaluated by major energy companies for this purpose.

With the increasing cost and growing shortage of energy, more extensive use of geothermal energy in western Colorado is envisioned for the future, especially for space heating purposes. A study by Coe (1978) showed that in 17 communities in western Colorado some or all of the total heating requirements could be obtained from nearby thermal waters. Some of the other potential uses for thermal waters in western Colorado are summarized in Table 2.

Table 2. Possible use of thermal waters in western Colorado. Adapted from Coe (1978).

<table>
<thead>
<tr>
<th>Use</th>
<th>Resource</th>
</tr>
</thead>
<tbody>
<tr>
<td>Refrigeration of food products</td>
<td>Wood chip drying</td>
</tr>
<tr>
<td>Biomass processing for fuel and fertilizer</td>
<td>Feedlot warming</td>
</tr>
<tr>
<td>Agricultural product growing</td>
<td>Tropical gardens</td>
</tr>
<tr>
<td>Agricultural product processing</td>
<td>Greenhouse operations</td>
</tr>
<tr>
<td>Nalhide-dawsonite processing</td>
<td>Power generation</td>
</tr>
</tbody>
</table>

**CONSTRAINTS ON THE DEVELOPMENT OF GEOTHERMAL ENERGY**

While the geothermal resources of western Colorado appear to offer great promise, their development is lagging for a variety of reasons, mainly that the resources are primarily the low to moderate type and will be used for direct application purposes. In most instances these uses are small projects with low return on investment. Consequently the major energy companies with sufficient exploration and development capital are not interested in developing them. This leaves their development to private individuals, a few small geothermal development companies, or local governments. As these entities usually do not have adequate funds available, they have had to seek outside financial assistance. During the past few years, the Federal Government has provided development monies for direct-use geothermal projects through a series of insurance, grant, or loan programs. In a number of instances, such as at Pagosa Springs in southwestern Colorado, these programs have been very successful in helping to develop a specific resource.

Another constraint to the development of the low to moderate geothermal resources of western Colorado is a definite lack of geological knowledge about each system. Prospective developers,
HYDROTHERMAL RESOURCES OF WESTERN COLORADO

who are not resource development oriented, are very reluctant to develop a resource when there is no information available that they can use in making reliable cost estimates regarding resource location, drilling costs, and amounts of energy to be expected.

A perceived constraint, which usually proves to be groundless, is the engineering problems associated with the use of geothermal fluids. Scaling, corrosion and noxious gases are all problems that usually can be solved with proper engineering treatment.

CONCLUSION

The hydrothermal geothermal resources of western Colorado are a largely untapped resource that appear able to supply large amounts of energy for a variety of purposes. Before this development can occur, however, better resource definition is needed to accurately define the location, size, and temperatures of the individual systems. An active group of developers are needed who are willing and able to develop and sell the low to moderate temperature geothermal resources.

REFERENCES


