Coal resources of Socorro County, New Mexico

JoAnne C. Osburn, 1983, pp. 223-226

in:

This is one of many related papers that were included in the 1983 NMGS Fall Field Conference Guidebook.

Annual NMGS Fall Field Conference Guidebooks

Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico.

Free Downloads

NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks.

Copyright Information

Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. No material from the NMGS website, or printed and electronic publications, may be reprinted or redistributed without NMGS permission. Contact us for permission to reprint portions of any of our publications.

One printed copy of any materials from the NMGS website or our print and electronic publications may be made for individual use without our permission. Teachers and students may make unlimited copies for educational use. Any other use of these materials requires explicit permission.
This page is intentionally left blank to maintain order of facing pages.
COAL RESOURCES OF SOCORRO COUNTY NEW MEXICO

JOANNE CIMA OSBURN
New Mexico Bureau of Mines and Mineral Resources
Socorro, New Mexico 87801

INTRODUCTION

Coal-bearing strata crop out in the northwest corner of Socorro County in the Datil Mountains coal field and in the east-central part of the county in the Jornada del Muerto and Carthage coal fields (fig. 1). In addition, small isolated coal outcrops occur in northeastern Socorro County on the Sevilleta Wildlife Refuge near the village of La Joya (fig. 1). In all areas in the county, potential coal resources are present in the Crevasse Canyon Formation with the thickest coal beds occurring in the lower part of the formation.

DEPOSITIONAL SETTING

Coal beds in the Crevasse Canyon Formation in central New Mexico represent a modest resource. The coals are concentrated, though not confined to the lowest 125 m of the formation. The Crevasse Canyon Formation comprises a sequence of predominantly fine-grained sedimentary rocks, associated coals, and thin fluvial sandstones. The formation can be effectively divided into three parts: a lower coastal swamp sequence about 125 m thick, a middle coastal plain sequence about 90 m thick, and an upper fresh-water swamp sequence that may be as much as 125 m thick in Socorro County. Thin channel sandstones occur in the lowest part of the formation and sandstones as much as 12 m thick occur in the highest portion of the formation exposed in the eastern part of the Datil Mountains coal field.

The coal beds in the Crevasse Canyon Formation in Socorro County are typical of coals deposited in environments with strong fluvial influence. They are thin and discontinuous with strike lengths generally less than a kilometer, but of excellent quality.

The majority of coal beds encountered in the eastern part of the Datil Mountains coal field are around 70 cm thick. This estimate of thickness is based on 20 holes drilled on 1.8-km centers on the Crevasse Canyon outcrop belt and on detailed surface mapping throughout the area. Coal beds as much as 1.3 m thick have been observed during both surface and subsurface mapping; however, coal beds this thick appear to be uncommon in the eastern part of the Datil Mountains coal field. More closely spaced drilling could better define areas of thicker coals. Resources for the eastern part of the Datil Mountains coal field based largely on a recent open-file report (Osbum, 1982) are presented in Table 1.

Maximum thickness of coal beds exposed at the surface in the Jornada del Muerto coal field is 70 cm. However, two holes drilled in the field and the coal bed worked in the Law mine show that coals as much as 1.2 m thick are present in the subsurface (Tabet, 1979). More exploratory drilling must be done, especially in the southern part of the field, before a resource estimate can be made.

The minable coal bed in the Carthage coal field ranges from 1.5 to 1.8 m in thickness. Little is known about the total amount of coal already mined in eastern Socorro County. Upper Cretaceous rocks present in the Carthage area have not been mapped in detail. It would, therefore, be meaningless to present a resource estimate for any of the coal-bearing areas in eastern Socorro County.

MINING HISTORY

Coal mining activity in Socorro County has been recorded intermittently from 1856 to 1980. Production reported by state and federal inspectors has been concentrated in the Carthage coal field (fig. 2). There are, however, a number of small mines and prospects scattered...
throughout the county on which no production records are known. Most of the data presented here was gleaned from reports of the New Mexico State Mine Inspector and the New Mexico State Coal Mine Inspector from 1899 to the present, unless otherwise stated.

In the Carthage coal field, only one minable coal bed exists and it is known as the Carthage coal bed. There are no surviving production records prior to 1899. All of the mines were worked underground by the room and pillar method. The Carthage coal bed dips from 12° to 35° and was often difficult to follow due to faulting. These problems caused the demise of a number of very short-lived mining ventures and greatly modified the normal grid associated with room and pillar mining (fig. 3). The coal was sold throughout the Rio Grande valley, in El Paso, and in markets in Mexico (Gardner, 1910).

Carthage coals are of excellent quality and to this end the San Pedro Coal and Coke Company (an Atchison, Topeka, and Santa Fe subsidiary) operated coke ovens in San Antonio beginning in the early 1880's (Marshall, 1945). The Atchison, Topeka, and Santa Fe Company built the San Pedro Branch east from San Antonio to the coalfield in the spring of 1882. The San Pedro Branch was abandoned in February 1896 because of persistent rumors that the Carthage coal reserves were depleted. In 1902, Holm Bursum of the Carthage Coal Company wrote the management of the AT&SF requesting that the San Pedro Branch be rebuilt (Bursum papers). Bursum's request was denied as an unprofitable venture for the railroad. Hence, from 1896 to 1906, all coal produced in Carthage was shipped about 19 km by wagon to San Antonio to the main line of the Atchison, Topeka and Santa Fe. In 1906, the New Mexico Midland Railroad was built by the Carthage Fuel Company which operated the Hilton, Government, and Bernal mines, thus connecting selected Carthage mines with the Santa Fe main line (fig. 4). The New Mexico Midland Railroad operated until 1931 when mining declined drastically in the Carthage coalfield (Myrick, 1970).

From 1900 to 1918 the Hilton, Government, Bernal, and Emerson mines provided the reported production in the county. However, several other small mines are known to have been worked in the area during this time period although no production data has survived for them. These mines include the McIntyre mine that operated from 1904 to 1907 and the Gap mine that operated from 1909 through 1911. The

Table 1. Demonstrated coal resources in the eastern part of the Datil Mountains coal field, Socorro County, New Mexico (in millions of metric tons, all values rounded, 1800 short tons/acre-foot used in calculations then converted to metric tons, maximum depth = 107 m).

<table>
<thead>
<tr>
<th>Location</th>
<th>Measured Resources</th>
<th>Indicated Resources</th>
<th>Demonstrated Resources</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Thickness of coal bed, in cm</td>
<td>Thickness of coal bed, in cm</td>
<td>measured & indicated</td>
</tr>
<tr>
<td></td>
<td>37-70</td>
<td>70-107</td>
<td>>107</td>
</tr>
<tr>
<td>1N. 3W.</td>
<td>0.23</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1N. 4W.</td>
<td>0.34</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1N. 5W.</td>
<td>0.74</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>1N. 6W.</td>
<td>1.71</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2N. 4W.</td>
<td>2.08</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2N. 5W.</td>
<td>0.66</td>
<td>0.40</td>
<td>-</td>
</tr>
<tr>
<td>2N. 6W.</td>
<td>3.12</td>
<td>0.52</td>
<td>0.47</td>
</tr>
<tr>
<td>2N. 7W.</td>
<td>2.19</td>
<td>0.07</td>
<td>1.16</td>
</tr>
<tr>
<td>3N. 7W.</td>
<td>1.77</td>
<td>0.16</td>
<td>0.24</td>
</tr>
<tr>
<td>4N. 7W.</td>
<td>2.56</td>
<td>1.07</td>
<td>1.36</td>
</tr>
<tr>
<td>4N. 8W.</td>
<td>1.39</td>
<td>1.48</td>
<td>-</td>
</tr>
<tr>
<td>Totals</td>
<td>16.99</td>
<td>4.50</td>
<td>3.23</td>
</tr>
</tbody>
</table>

measured = 24.72 indicated = 51.40
operators of the Emerson mine continued to haul their coal to Sat
Antonio by wagon until 1915 when the mine intersected a major fault
which cut out the coal bed causing the mine to cease operations.

In 1918, B. H. Kinney became the primary operator in the Carthage
area producing more than 34,000 metric tons per year until 1929 when
production decreased dramatically. The Kinney mine continued pro-
ducing on a small scale until 1950. In the early 1920s, the Carthage
Fuel Company operated only the Government mine where pillars were
robbed in 1923 and the mine was closed in 1924. The Carthage No.
mine was being developed during the same time period by the Carthage
Fuel Company and reported 16,300 metric tons of production in 1925.
This mine continued producing through 1967 supplying local market
such as the Albuquerque school system and Socorro public building!
(Kiraly, 1983).

Coal production plunged during the 1930s and the Carthage mine
never returned to pre-Depression production levels. The Kinney mine
were the only producing mines from 1926 through 1935. The Stan
Mine Inspector's Report stopped listing individual mine production
figures in 1936 when they began giving only county production figures
Therefore, from 1936 on, accurate production figures are possible only
when but one mine in the county was producing in a given year. In
1936 through 1939, both the Kinney mine and the Hart mine operate
in the Carthage area until the Hart mine was closed in 1939. Other
mines that operated in the Carthage area in the 1940's and 1950's
included the San Antonio, Desoto, Cortez, and Aguilar mines, none of
which operated for more than 3 consecutive years. By 1954, the only
working mine in the Carthage field was the Carthage No. 3 mine
operated by J. B. Baca of Socorro until 1967. Mining ceased primarily
because of a widespread switch to natural gas, not necessarily because
of depleted coal reserves. The final venture known in the Carthage fieled
was the Tres Hermanos mine which opened in 1980 but ceased oper-
ations within the year because of an original overestimation of reserve
(Martinez, 1981).

Tabet (1979) reports two small mines in the Jornada del Muerto coal
field, north of Carthage. Federal records identify one mine as the Lam
mine which operated in the late 1920s on a 1.2-m coal bed. No date
was found on the other Jornada mine.

Much less is known about the coal mining activity in the eastern par-
t of the Datil Mountains coal field. The three known mines probably
supplied residents at Riley and Magdalena with domestic fuel and pos-
sibly fueled the smelters in Magdalena as well. These are the Riley, El
Cerro, and Hot Spot mines.

The Riley mine was located about 1.6 km southwest of the Rile
townsite and operated from 1939 intermittently until 1949. The coal
bed is in the lower part of the Crevasse Canyon Formation and was
reported to be as much as 1.4 m thick (Frost and others, 1979). Pro-
duction, estimated at a few hundred tons, was certainly hampered b

closely spaced faults and Tertiary intrusions common to the Riley area.

The El Cerro mine is located about 5 km southwest of Riley and was
mined from 1917 to 1940. The mine produced 715 metric tons from an
upper Crevasse Canyon coal bed ranging from 45 to 70 cm in
thickness (Frost and others, 1979).

The Hot Spot mine, located west of Abbe Spring Canyon, produced
77 metric tons from a thin seam in the upper Crevasse Canyon Formation
during the period from 1927 to 1931. Small-scale, closely spaced faulting
probably forced the mine to close.

COAL QUALITY

The quality of coals in Socorro County is generally very good. Based
on 41 published analyses, heating value ranges from 10,030 to 14,950
BTU/lb. (as received), the percentage of sulfur is consistently less than
one percent, and the ash content is less than 14 percent (Table 2).

Coal analyses in the Carthage coal field are limited to 19 pre-1925
U.S. Bureau of Mines analyses (Ellis, 1936) and one recent channel
sample from the Hart mine (Tabet, 1979). Seven of the early analyses
consist of proximate and sulfur analyses only. Calculation of apparent
coal ranks on Carthage samples yield a rank of high-volatile A bitu-
ninous coal according to ASTM standards (1980).

Samples analyzed from the eastern part of the Datil Mountains coal
field consist of five samples analyzed by the U.S. Bureau of Mines prior to 1925 (Ellis, 1936) and 15 recent, commercially analyzed
samples (Osburn, 1982). It should be emphasized that all of these
samples fall in the range of high-volatile B bituminous coals. These
recent analyses are significant because the Datil Mountains coals have
previously been categorized as subbituminous rank coals (Read and
others, 1950; Trumbull, 1960). There are no published analyses that
support a subbituminous coal rank. It is presumed that this miscon-
ception was based on unpublished analyses of grab samples of outcrop
coals.

CONCLUSIONS

There are still more unknowns than facts about the coal resource
potential of Socorro County. Additional exploratory drilling would be

<table>
<thead>
<tr>
<th>Table 2. Average chemical analyses of Socorro County coals by field.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carthage coal field</td>
</tr>
<tr>
<td>number of samples*</td>
</tr>
<tr>
<td>mean</td>
</tr>
<tr>
<td>percent</td>
</tr>
<tr>
<td>Moisture</td>
</tr>
<tr>
<td>Volatile matter</td>
</tr>
<tr>
<td>Fixed Carbon</td>
</tr>
<tr>
<td>Ash</td>
</tr>
<tr>
<td>Sulfur</td>
</tr>
<tr>
<td>Hydrogen</td>
</tr>
<tr>
<td>Carbon</td>
</tr>
<tr>
<td>Nitrogen</td>
</tr>
<tr>
<td>Oxygen</td>
</tr>
<tr>
<td>BTU/lb.</td>
</tr>
</tbody>
</table>

* 35 percent of Carthage analyses comprise proximate analysis plus sulfur. In these cases, number of samples is 13.
valuable in both the Jornada del Muerto and the Datil Mountains coal fields. The most favorable factors about the coal in Socorro County are high heating values and low sulfur and ash values. This resource would probably be best utilized locally for municipal and domestic heating, or perhaps at a local smelter. The overall tonnages available are small when compared to coal resources in northwestern and northeastern New Mexico. Development will depend largely on local economic factors.

REFERENCES
Bursum Papers, Letter from D. E. Cain to H. O. Bursum, July 13, 1902: Albuquerque, Zimmerman Archives, University of New Mexico.
Marshall, J., 1945, Santa Fe, the railroad that built an empire: Random House, New York.