Preliminary investigation of the origin of the Riley travertine, Socorro County, New Mexico

James M. Barker, 1983, pp. 269-276

in:

This is one of many related papers that were included in the 1983 NMGS Fall Field Conference Guidebook.

Annual NMGS Fall Field Conference Guidebooks

Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico.

Free Downloads

NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks.

Copyright Information

Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. No material from the NMGS website, or printed and electronic publications, may be reprinted or redistributed without NMGS permission. Contact us for permission to reprint portions of any of our publications.

One printed copy of any materials from the NMGS website or our print and electronic publications may be made for individual use without our permission. Teachers and students may make unlimited copies for educational use. Any other use of these materials requires explicit permission.
This page is intentionally left blank to maintain order of facing pages.
PRELIMINARY INVESTIGATION OF THE ORIGIN OF THE RILEY TRAVERTINE, SOCORRO COUNTY, NEW MEXICO

JAMES M. BARKER
New Mexico Bureau of Mines and Mineral Resources
Socorro, New Mexico 87801

INTRODUCTION

The origin of the late Cenozoic travertine-like limestone northeast and southeast of Riley has been variously ascribed to playa, lacustrine, pedogenic, or spring processes. The origin of such a large deposit of laminated, vuggy, or massive limestone of highly varied morphology is more likely to be complex than to be the single one proposed by most workers (Rube, 1967, p. 67).

The hypothesis presented here is that the limestone is the result of a nonpedogenic process producing proximal (surface and subsurface) and distal (subsurface) secondary carbonate deposits related primarily to lateral groundwater flow. The carbonate-charged water is interpreted to have been generated in Paleozoic limestones on the west flank of the Ladron Mountains and the southeast flank of Sierra Lucero in the late Cenozoic. These waters flowed over and through alluvial fans and other sedimentary deposits and formed at the surface. They are contemporaneous with pervasive and expansive subsurface secondary calcite cementation of pre-existing host sediments. This depositional system is analogous in part to the groundwater calcrete (nonpedogenic) described in Western Australia by several authors (see for example Carlisle and others, 1978).

Use of the term Riley travertine will be retained in this report. The definition of travertine is broad and nongenetic enough to include the Riley deposit. Neither laminar nor vuggy structure, nor thermal spring origin is required for a travertine. Relatively rapid precipitation from carbonate-bearing surface or subsurface water is sufficient. Semantic problems abound concerning secondary calcite deposits and are discussed in detail by many authors, including Carlisle and others (1978), Reeves (1976), and Goudie (1972a, b).

The Riley travertine occurs in two main deposits 8 km northeast and 18 km southeast of Riley, hereafter called north mesa and south mesa, respectively (fig. 1). The once continuous body of Riley travertine has been bisected by incision of the Rio Salado. The Riley travertine of north mesa underlies about 46 km² in T2 and 3N, R3W, on the west flank of the Ladron Mountains. At south mesa, the travertine underlies about 21 km² in T1N and IS, R2 and 3W, and a small portion of the Sevilleta National Wildlife Refuge along the west edge of the Silver Creek drainage. It extends westward past La Jencia Creek.

The main work on the Riley travertine has been done by Denny (1940, 1941), Kottlowski (1962), Massingill (1977), and Chamberlin and others (1982). Regional mapping at various scales that included the Riley travertine has been done by Bachman (unpublished map for U.S. Geological Survey) and Machette (1978a). Chapin and others (1979) did not differentiate the Riley travertine from the surrounding upper Santa Fe Group. Condie (1976) mapped the Precambrian terrain of the Ladron Mountains and summarized earlier work.

Work with implications to the Riley travertine has been done by Hawley (1978), Machette (1978b), Bachman and Machette (1977), Sanford (1968), Kottlowski (1960), Armstrong (1958), and Bryan (1926).

REGIONAL GEOLOGY AND STRATIGRAPHY

The Riley travertine straddles the boundary between the Colorado Plateau and the Basin and Range provinces. It is at the western edge of the Rio Grande rift in central New Mexico and extends from the relatively stable Lucero uplift into the highly extended La Jencia basin south of the Ladron Mountains. The Riley travertine descends in elevation from north mesa to south mesa. It overlies progressively younger rocks to the southeast. The northern contact, which represents the basin margin, is on Paleozoic rocks of the Colorado Plateau. South of the Rio Salado, the Riley travertine rests on Cenozoic basin-center deposits.

The Riley travertine is not involved in major faulting and appears to be everywhere in depositional contact with underlying units. The Riley travertine at south mesa is tilted slightly (1-2°) to the west. At north mesa it is undeformed although it has a synclinal form which is a remnant of deposition on inclined substrates rather than of tectonism. Pre-Riley faulting is not considered relevant to this study except as it affects transmissivity of the carbonate source rocks or present erosion patterns.

The Popotosa Formation represents early basin-fill deposits related to incipient stages of Rio Grande rifting in the late Oligocene or early Miocene. The Popotosa consists of volcanic-rich fanglomerate and intertonguing playa deposits of the lower Santa Fe Group. The upper Santa Fe Group represents late basin-fill deposits, in part equivalent to the Sierra Ladrones Formation and comprised of fanglomerate derived from modern mountains and of fluvial sandstone deposited by the ancestral Rio Grande.

The slightly diachronous Riley travertine is estimated to be between one and three million years old (Chamberlin and others, 1982). It is locally interbedded within the upper Santa Fe at south mesa (fig. 2). A nearly complete stratigraphic section is exposed from Silver Creek westward through locality 15. The Riley travertine reaches 15 m in thickness, but is typically 4-6 m thick.

Pre-travertine geology is complex within the study area. The Ladron Mountains are mainly Precambrian igneous and metamorphic rocks. A major fault juxtaposes Paleozoic rocks, primarily of the Madera Group, with Precambrian units along the northwestern slope of the Ladron Mountains (Kelley, 1977), although the contact is depositional to the south. The Paleozoic units are dominantly limestone and are composed of abundantly faulted Madera Group, and Abo, Yeso, Glorieta, and San...
MAP UNITS
QUaternary
Piedmont slope deposits (ps)
Fanglomerate deposits (f)

QUaternary – Tertiary
Santa Fe Group (QTsf)
upper (u) in part correlative with Sierra Ladrones Fm. and including Riley travertine (t)
Popotosa Fm. (p)

Mesozoic
Chinle Formation
Mancos Shale
Mesaverde Group

Paleozoic
San Andres Fm.
Glorietta Sandstone
Yeso Formation
Abo Formation
Madera Group
Sandia Formation
Kelly Limestone

Precambrian
Undifferentiated; granite, quartz monzonite, metavolcanics, quartzite, phyllite, and arkosite

LEGEND
• 3 Barker sample locality
• L7 Logsdon LAD sample locality
• LS Barker limestone sample

Source: Modified from Bachman (unpubl.), Machette (1978a), & Noble (1950) with other work by Barker, this report.

Figure 1. Generalized geologic map of the Riley travertine and adjacent area.
Andres Formations. They underlie much of the Riley travertine at north mesa and form the northern and western basement upon which the Riley travertine is in depositional contact. To the southwest, the Riley travertine overlaps the Triassic Chinle Formation and the Santa Fe Group of Tertiary-Quaternary age (fig. 3). At the south edge of north mesa, where the main escarpment is prominent, the Riley overlaps the Upper Santa Fe Group with a sharp contact. Quaternary piedmont-slope deposits cover most of the eastern contact and thin remnants of post-Riley Upper Santa Fe Group and soils cover most of the Riley travertine elsewhere. The western and northern margins are less defined because of erosion and facies changes. The Riley travertine at north mesa thins from both the east and the west and from south to north.

The Riley travertine at south mesa was deposited on the upper Santa Fe Group. It is overlain by younger Santa Fe Group deposited on the strata which later became the host for the Riley travertine. The Riley travertine is well defined at the northern edge of the Silver Creek portion but it rapidly thins and changes facies to the south. The upper and lower contacts are generally sharp with a slight angular unconformity locally at the base. To the west, the travertine is indistinct and merges into the Santa Fe Group west of La Jencia Creek. It thins and becomes marly both westerly and southerly of locality 14 in the Sevilleta Wildlife Refuge. Poor- to well-developed calcic soils cover most of south mesa.

The Riley travertine caps the mesa on the western flank of the Ladron Mountains and the mesa west of the Silver Creek drainage on the northwestern flank of the Lemitar Mountains. The mesas grade into surrounding terrain except where well-developed escarpments facing the Rio Salado from the north and south locally dominate the skyline.

The Riley travertine forms very low-angle dipslopes which are most prominent in surface exposures near the edges of the mesas facing the Rio Salado. The Riley travertine generally descends in elevation to the south and southeast.

The east-west relief at north mesa is about 240 m and the north-south relief is about 95 m. Karst topography is present locally and developed mainly near the mesa rim. Some sinkholes or dolines exist near the west-central margin of the Riley travertine (fig. 4). Exposed surfaces typically exhibit carbonate-solution weathering features.

The Riley travertine at south mesa slopes less than 1° to the south and has relief of about 10 m. It slopes about 1-2° to the west with a relief of about 100 m. No karst topography was observed on south mesa although much of the exposed Riley travertine was differentially weathered.

The geochemical data summarized in Tables 1 and 2 suggest that carbonates of the Madera Group are the primary source of the Riley travertine and that south mesa was down the original flow path from north mesa. Insoluble residues were obtained from 18 samples of the Riley travertine by digestion in HCl. Five samples (—230 mesh) analyzed by x-ray diffraction showed quartz was dominant followed in decreasing abundance by plagioclase, potassium feldspar, kaolinite, montmorillonite, illite, and hornblende. Hydrochloric acid dissolution of the limestone tends to eliminate clay minerals; other clay minerals may have been present prior to digestion. Microscopic analysis of the coarse (+230 mesh) fraction of 19 insoluble residues showed the predominate minerals in order of decreasing abundance were quartz, feldspar, hornblende, biotite, muscovite, and rock fragments.

ORIGIN OF THE RILEY TRAVERTINE

The most general conclusion has been an origin ascribed to spring activity. One's perception of the origin can be biased because of the variation from a true laminated travertine (fig. 5) to marl or limy sandstone and siltstone.

The genesis of large-scale, tabular, secondary calcium-carbonate bodies is controlled by the primary movement of carbonate-charged solutions. Vertical flow is dominant in pedogenesis which is a subsurface process related to either descending fluids (gravitational water) or ascending fluids (capillary water). Lateral flow is dominant in nonpedogenic carbonate systems which can have either surface movement or subsurface movement.
Carbonate supersaturation is induced by loss of CO$_2$ from solution, by evaporation, or by both. This is true for vertical and for lateral processes. The dominant mode of Riley travertine formation was lateral movement of carbonate-charged water which produced nonpedogenic secondary carbonate deposits.

The terms caliche and calcrete were introduced simultaneously but calcrete did not become prominent in the United States until the uranium discoveries of the 1970's in Western Australia. These were deposited by lateral groundwater processes in sediments along axes of fluvial valleys. They are nonpedogenic valley calcretes, a subcategory of groundwater calcrete (Carlisle, 1980; Carlisle and others, 1978).

Groundwater calcretes are nonpedogenic accumulations of calcium carbonate deposited under both surface and subsurface conditions, primarily by lateral flow of cool, carbonate-charged groundwater. They are deposits of the water table rather than of soil water. Nonpedogenic calcrete may be locally indistinguishable from pedogenic caliche and calcrete and from lacustrine, playa, marine, spring-apron, or other limestones. Travertine was excluded from groundwater calcrete by Carlisle and others (1978) but "cienega calcrete" related to surface seeps was included. Cienega calcrete formed from a seep and travertine from a spring are very similar, so the spring-deposit facies of the Riley travertine is a part of groundwater calcrete. Portions of the Riley travertine have been formed by deposition of nonpedogenic calcium carbonate by lateral groundwater flow as recognized by Bachman and Machette (1977), Chamberlin and others (1982), and J. W. Hawley (1983, oral commun.).

Several relationships must be explained by the Riley travertine depositional process: (1) the large area (67 km2) underlain now by the Riley travertine and the high probability of a significantly larger areal extent in the past; (2) the highly variable texture and lithology, plus the paucity of spring deposits and pedogenic structures; and (3) the regional paleodrainage system, terrigenous clast provenance, and carbonate source rocks.
Areal Extent

The Riley travertine now underlies about 67 km2 with possibly twice that area implied as the original extent prior to erosion. Travertine of localized spring origin rarely covers such large areas. Supersaturated waters emerging from an orifice will typically equilibrate within a few hundred meters, especially on a caliche substrate and in the presence of biota.

A large area could have been sequentially or simultaneously covered by coalescing spring deposits. Evidence for multiple springs is lacking at south mesa. Chamberlin and others (1982) report possible spring mounds and vents at several localities on north mesa, so a spring-apron origin is reasonable for some portions.

The inferred maximum extent of the limestone has an elongate shape. The width (W) is about 8 km and the length (L) about 32 km for a 0.25 W/L ratio. Very elongate limestone bodies are known, such as the nonpedogenic calcrete of Western Australia (W/L about 0.01). Genesis of large volumes of travertine requires many small springs or a few springs with very high flow rates to inundate a large area before carbonate equilibration with surface conditions can occur. Field evidence for many simultaneously active springs is lacking. A series of springs related to a fault is most likely but no evidence for such a fault exists.

Most active springs are on the east side of the fault blocks in the Ladron-Lemitar Mountains area rather than the west-facing slopes occupied by the Riley travertine (Kottlowski, 1962). This implies that the Ladron Mountains may not be the primary groundwater source. The areas to the north or northwest toward the Lucero uplift, and ultimately the San Juan basin, may be the dominant source (Goff and others, 1983; Trainer and Lyford, 1979).

Apart from water source and abundance problems, a high flow rate from a few springs implies deposition of the Riley travertine primarily by surface waters in either lacustrine, cienega, or fluvial environments. Evidence for general lacustrine conditions is lacking, although local ponding in cienegas seems likely. Fluvial channels were not observed within the Riley travertine.

Variable Texture and Lithology

The texture and lithology of the Riley travertine is highly variable. It ranges from massive to laminar with vuggy, oncolite- or algal-like, and fragmented portions (fig. 6). Locally, travertine (including re-worked) and calcite-cemented breccia, conglomerate, and finer clastic sediments are abundant (figs. 7 and 8). This suggests deposition under locally different conditions on and in different substrates and related to a larger more unified process. The multiple textures of the Riley travertine can be encompassed under a valley axial-flow model. The variability of the Riley travertine is related to connected but localized conditions in which lateral groundwater flow occurs in several forms and in strata of differing lithology and age. The flow was primarily subsurface but had significant surface flow, ponding, and spring activity closer to the recharge areas. The flow was entirely subsurface at south mesa. This combination of local spring, cienega, lacustrine or playa, and groundwater activity yields the variability associated with the Riley travertine.

Lack of Pedogenic Morphology

The Riley travertine has often been described as a pedogenic caliche. Vertical transport involving meteoric or capillary water is overwhelm-
ingly dominant in pedogenesis. In most cases, percolation downward is the primary process. Lateral transport is not specifically excluded but usually is limited to localized movement. Pedogenesis generally produces very complex micro-morphology with massive and laminar structure only part of the sum of the morphological elements (for example, see Arakel, 1982). While massive caliche exists, laminar carbonate is not restricted in any way to pedogenesis. Of the two predominant textures of the Riley travertine—laminated and vuggy-massive—neither is diagnostic of pedogenesis. The Riley travertine lacks the complex vertical sequence of morphologic elements typical of pedogenic calcite horizons.

Calcic soils typically are less indurated downward (Gardner, 1972). The Riley travertine is entirely well-indurated. Mature pedogenic calcite is typically nodular or nodular laminar, with abundant brecciation and bioturbation, unlike the generally laminated or massive Riley travertine. The terrigenous clasts in the Riley travertine do not have caliche-like rinds and lack the thicker basal rinds related to pedogenesis (Gile and others, 1965). Pedogenic calcite shows evidence of cyclic or episodic deposition in contrast to the more pervasive and continual precipitation of nonpedogenic calcite. Subaerial or near-surface features such as cracking, bioturbation, or rootlet horizons are generally lacking in the Riley travertine.

Similarities between pedogenic and nonpedogenic secondary calcite do exist as shown by the relatively recent distinction made between them. Both show evidence of secondary calcite precipitation. Displacive calcite is strongly suggested in many instances by the floating grains and carbonate cement in excess of that allowed by a simple void filling model (Goudie, 1972b; Gile and others, 1981; Lattman, 1973; Watts, 1978; Klappa and Watts, 1979; and Gardner, 1972). The Riley travertine is locally case hardened on external surfaces and in some voids and vugs.

Regional Paleodrainage

The modern drainage system did not exist at the time the Riley travertine was deposited. Rather than the modern west-to-east flow, the paleodrainage was north to southeast. A paleodrainage flowing west to east merged with this flow near south mesa. This interpretation is supported by the clast provenance (Denny, 1940), paleocurrent indicators in the Santa Fe Group (R. M. Chamberlin, 1983, oral commun.), and
by geochemical data (this study). The paleodrainage most likely passed north of what is now San Lorenzo Canyon because the Lemitar Mountains were a major topographic high in upper Santa Fe time (R. M. Chamberlin, 1983, oral commun.).

The -1 permil depletion of ISO between north and south mesa (table 2, basal samples) reflects the northerly to southerly flow of groundwater proposed above. Friedman (1970) has shown that equilibrium fractionation between water and the CO₂ and CaCO₃ lost from it depletes the remaining water in 0. The net result is that downflow, the water is depleted in 0 and CaCO₃, precipitated from it is similarly depleted.

Calcite is not deposited until a supersaturation of about 10 is achieved, typically by loss of CO₂ from the system. The CO₂ lost is enriched in 18C making the solution isotopically heavy with 18C. After a supersaturation of 10 is achieved, the system simultaneously loses light CO₂, gas and heavy CaCO₃, precipitate. These combine to yield less 18C in solution than for degassing alone (Udowski and others, 1979). The calcite precipitated will be heavier than the dissolved carbonate, theoretically by +2.3 to +2.9 permil (Dandurand and others, 1982). Downflow calcite will be relatively depleted in 18C compared to upflow calcite. A large relative 18C depletion of -6.2 permil exists between north mesa (+6.8 permil) and south mesa (+0.6 permil; table 2) indicating groundwater flow from north to south.

Strontium should be preferentially retained in the early, near-source, rapidly deposited calcite and manganese should be concentrated in later calcite (Lorenz, 1981). Travertine on north mesa, with higher average strontium, was deposited before (or upflow of) travertine with lower average strontium at south mesa. The higher manganese concentration at north mesa, in contrast to the expected lower value, may represent a secondary overprinting of manganese associated with a small deposit of manganese vein mineralization on the southwest side of north mesa.

ECONOMIC GEOLOGY

The Riley travertine has long been recognized as a source of high-calcium limestone (Kottlowski, 1962). The most likely use is in manufacture of cement (Chapin and others, 1979) although lime production is also possible (Chamberlin and others, 1982). The main obstacles to development are the remoteness of the area (Siemens, 1982) and the possibility of wilderness withdrawal of much of the area over the deposit. High-calcium limestone is defined as greater than 95 percent CaCO₃. Based on the calcite contents obtained for this study (table 2), the deposit averaged only about 92 percent CaCO₃. One-third of the deposit may exceed 95 percent CaCO₃, primarily at north mesa, thus dropping the high-calcium limestone resource from 225 million metric tons (Lobsdon, in Chamberlin and others, 1982) to perhaps 75 million metric tons.

The less-pure limestone may make excellent feed for cement manufacture since impurities are added to limestone in the manufacturing process. Local supplies of water, shale, and coal indicate that cement manufacture may be possible (Chapin and others, 1979). The Riley travertine is everywhere at or near the surface making open-pit mining at low stripping ratios feasible. A railroad spur or paved highway (about 50 km each) must be built as basic infrastructure to initiate any development.

SUMMARY

The Riley travertine is a secondary carbonate of complex origin deposited in the upper Santa Fe Group, probably between one and three million years ago. It is the result of lateral groundwater flow from Paleozoic carbonate aquifers and associated bajadas. This flow was both surface and subsurface and produced carbonate deposits of complex morphology with spring, lacustrine, reworked and pervasively or displacively cemented facies. The unit is composed of nonpedogenic secondary carbonate deposited on and within existing sediments and pre-Santa Fe rocks; consequently, it is somewhat diachronous. It corresponds to a nonpedogenic groundwater calcrete with valley calcrete predominating and cienega or other calcite locally abundant.

The groundwater was initially charged with carbonate in peripheral Paleozoic limestone strata or bajadas derived from them. The dominant recharge area was either the west slope of the Ladron Mountains, where uplift provided increased precipitation and greater hydraulic head, or northern and northwestern source areas on the Lucero uplift and possibly the San Juan basin. Groundwater flowed toward the site of north mesa from the west, north, and east then turned south along the valley paleodrainage axis and flowed southeast through the area now occupied by south mesa. The flow merged with a west-to-east drainage which then passed north of San Lorenzo Canyon and probably entered the ancestral Rio Grande.

The carbonate-charged waters flowed on and in pre-Tertiary basement rocks and then across Santa Fe sediments at the foot of the slopes and on or under the valley floor. Some water was debouched from springs with extensive subsurface flow below them or was present as episodic surface flows, although the bulk of the carbonate-charged water stayed below the surface in the Santa Fe sediments.

The carbonate-charged waters pervasively cemented the host Santa Fe sediments and spread outward and downstream from the source areas. As transmissive zones in the Santa Fe plugged with carbonate cement, a stronger lateral flow developed above these newly formed aquicludes and produced localized laminar deposition related to transmissivity and prior calcite deposition patterns. Contemporaneous surface ponding and spring activity yielded localized lacustrine or algal limestone and travertine. The various types of carbonate accumulation on alluvial fans (Lattman, 1973) were developed locally as shown by the calcite-cemented breccias and conglomerates, some with reworked Riley travertine clasts in them.

The massive portions with localized crude laminations, which increasingly dominate the Riley travertine downflow, were precipitated from laterally flowing subsurface groundwater. The groundwater moved pervasively into some sections and less so into others, where flow pulses over localized plugged zones yielded discontinuous laminations. The bed was thickened by displacive calcite, a process which may yield lamination and floating grains. Matrix material is diagnostically altered and commonly removed during calcite diagenesis, thus increasing the calcite content of the deposit.

The processes that formed the Riley travertine seem to be fundamental ones. The Riley travertine, while anomalously large, must represent a type of deposit present elsewhere in the arid southwestern United States and other arid regions of the world. Many secondary calcite deposits formerly thought to be pedogenic are probably nonpedogenic, although differentiating them is often very difficult without detailed study. Further investigation of the interrelations among secondary calcite depositional processes is needed for a clearer understanding of the relationship between pedogenic and nonpedogenic deposits.

ACKNOWLEDGMENTS

The isotope analyses were by A. Long and L. Warneke at the Isotope Geochemistry Laboratory of the University of Arizona using funds supplied by the New Mexico Bureau of Mines and Mineral Resources. Critical portions of south mesa were studied under a Special Use Permit issued by T. Stans, Manager of Sevilleta National Wildlife Refuge.
REFERENCES

Cembie, K. C., 1976, Precambrian rocks of Ladron Mountains, Socorro County, New Mexico: New Mexico Bureau of Mines and Mineral Resources Geologic Map 38, 1:24,000, text.

Denny, C. S., 1940, Tertiary geology of the San Acacia area, New Mexico: Journal of Geology, v. 48, p. 73-106.

