Stratigraphic summary and structural problems of Precambrian rocks, Picuris Range, New Mexico

Paul W. Bauer, 1984, pp. 199-204

in:

This is one of many related papers that were included in the 1984 NMGS Fall Field Conference Guidebook.

Annual NMGS Fall Field Conference Guidebooks

Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico.

Free Downloads

NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks.

Copyright Information

Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. No material from the NMGS website, or printed and electronic publications, may be reprinted or redistributed without NMGS permission. Contact us for permission to reprint portions of any of our publications.

One printed copy of any materials from the NMGS website or our print and electronic publications may be made for individual use without our permission. Teachers and students may make unlimited copies for educational use. Any other use of these materials requires explicit permission.
INTRODUCTION

The Picuris Range, located in north-central New Mexico 20 km southwest of Taos (Fig. 1), is a Precambrian-cored projection pointing westward from the southern Sangre de Cristo Mountains. All of the Precambrian rocks in the range are of Proterozoic age. They are bounded on the east by Cenozoic and Paleozoic rocks, and on the other three sides by sediments of the Rio Grande rift and volcanic rocks of Tertiary age.

Mineral assemblages in the Proterozoic rocks indicate medium-grade (amphibolite facies) peak metamorphic conditions near 530°C, 3.7 kb (Holdaway, 1978), at or near the AlSiO₃ triple point.

Several major stratigraphic and structural problems remain to be solved in the highly deformed Proterozoic rocks of the Picuris Range. This report discusses several of these problems.

PREVIOUS WORK

Two major groups of Proterozoic rocks are present in the Picuris Range and adjoining uplifts: a metamorphosed elastic sequence without significant volcanic rocks (Ortega Group), and a metamorphosed volcanic sequence (Vadito Group). There are two hypotheses concerning the relative age of these sequences in the Picuris Range. One holds that the Ortega Group is younger than the Vadito Group (Just, 1937; Gresens and Stensrud, 1974; Holcombe and Callender, 1982); the other maintains that the Vadito Group is younger than the Ortega Group (Montgomery, 1953; Nielsen, 1972; Long, 1976; Scott, 1980).

Although there has been considerable controversy over the stratigraphic sequence in the Precambrian rocks of northern New Mexico, the most recent work (Holcombe and Callender, 1982; Grambling and Codding, 1982; McCarty, 1983) has suggested that the Ortega rocks overlie the Vadito. Radiometric dates from rocks of the Truchas Range are consistent with this interpretation (Grambling, pers. comm. 1984).

(FIG. 2). The base of neither sequence is exposed. In the Picuris Range, the two groups may be separated by a fault-bounded slice of rock (the Piedra Lumbre Formation) that is not totally part of either group.

In the southern Picuris Range, the Vadito Group consists of a lower unit of interbedded amphibolites, metamorphosed volcanioclastic rocks, quartz—muscovite—biotite schists, and phyllites which are overlain by quartzites and conglomerates of the Marquenas Quartzite. Farther north lie fine-grained, banded, garnet—muscovite phyllites, metasiltstones, schists, and calc-silicates of the Piedra Lumbre Formation.

The Ortega Group consists of the massive, clean, crystalline Ortega Quartzite overlain by interbedded pelitic schists and quartzites of the Rinconada Formation, and by fine-grained, carbonaceous black slates and phyllites of the Pilar Phyllite. In the northern Picuris Range, above the Pilar, is a unit that resembles the Piedra Lumbre and is here informally called the schist of Hondo Canyon. The youngest Proterozoic rocks are coarse-grained quartz monzonite and granodiorite of the Embudo Granite, and coarse-grained granitic pegmatites.

Miller and others (1963) and Grambling and Codding (1982) have suggested correlations between Truchas and Rio Mora rock units and lithologically similar units in the Picuris. In the Truchas and Rio Mora areas, stratigraphy and geochronology suggest that Ortega is younger than Vadito. By inference this should also be true in the Picuris area. U—Pb zircon dates of about 1,700 m.y. for the felsic schist below the Ortega Quartzite (L. T. Silver, unpubl. data 1984) yield a maximum age for deposition of the Ortega Quartzite.

STRATIGRAPHIC PROBLEMS

Although Nielsen (1972) correlated the Piedra Lumbre Formation of the southern Picuris Range with the schist of Hondo Canyon in the northern Picuris Range, they differ in several aspects. Whereas the Piedra Lumbre Formation is mostly a fairly uniform fine-grained muscovite—biotite phyllite, the schist of Hondo Canyon additionally contains interlayered black-slate and black-phyllyite horizons which range in thickness from a few to tens of meters, plus a significant thickness of light-colored, thinly bedded, micaceous quartzite near its base. The contact between Pilar Phyllite and Piedra Lumbre in the southern Picuris Range is fairly abrupt, and is characterized by a strongly sheared phyllylitic zone. In contrast, the same contact in the northern Picuris Range is gradational, with various calc-silicate layers in the transitional zone rather than phyllites. These differences together with tentative structural differences (described below) indicate that either the Piedra Lumbre and Hondo Schist units are not correlative, or that the major fault described in the southern Picuris above the Pilar Formation does not exist above the Pilar in the northern Picuris. It seems appropriate to avoid applying the term Piedra Lumbre to these northern rocks until their relationship to the Piedra Lumbre at its type locality is better understood.

A second stratigraphic problem concerns the micaceous, quartz-rich rock that Montgomery (1953) termed the Rio Pueblo Schist. It is structurally below Ortega Quartzite in the Pilar area, and a similar rock occupies the same structural position near U.S. Hill. Gresens and Stensrud (1974) have argued that these rocks are metaryolite sequences upon which the Ortega Quartzite was deposited. If so, then that contact may separate a major metasedimentary terrane (the Ortega Group) from...
<table>
<thead>
<tr>
<th>GROUP</th>
<th>FORMATION</th>
<th>MEMBER</th>
<th>LITHOLOGY</th>
<th>THICKNESS</th>
<th>YOUNGING</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pegmatites</td>
<td>Coarse-grained granitic pegmatites.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pahuevo Granite</td>
<td>Penasco Quartz Monzonite</td>
<td></td>
<td>Variable, but generally coarse-grained, microcline-rich, quartz monzonites to granodiorites. (See Long, 1976).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rinconada Group (see Montgomery, 1953)</td>
<td>Pilar Phyllite</td>
<td>Interbedded, banded, garnet-schists and metasiltstones; calc-silicates; amphibolites and black slates locally.</td>
<td>84 (N)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ortega Quartzite</td>
<td>Massive, clean, coarsely crystalline, white to gray quartzite, locally interlayered with chlorite schists. (See Montgomery, 1953).</td>
<td>760 (M)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Metasiltstone-metasedimentary complex (includes the Rio Pueblo Schist).</td>
<td>Metasiltstone, metasediments, red-mica schist, metaconglomerate. (See Gresens and Stensrud, 1974).</td>
<td></td>
<td>Base Unexposed</td>
<td></td>
</tr>
<tr>
<td>Piedra Lumbré Group</td>
<td>Piedra Lumbré</td>
<td>Fine-grained, carbonaceous, muscovite-biotite phyllite with garnet porphyroblasts; local calc-silicates. Internally transposed.</td>
<td>103 (N)</td>
<td>369 (L)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Marquenas Quartzite (see Scott, 1980)</td>
<td>Conglomerate with deformed quartzite pebbles in a micaceous quartz matrix. "Flaser" structures.</td>
<td>610 (M)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vadito Schist</td>
<td>Various quartz-muscovite schists and phyllites with interbedded mafic metavolcanics. (See McCarty, 1983).</td>
<td>760 (M)</td>
<td></td>
<td>Base Unexposed</td>
</tr>
<tr>
<td></td>
<td>Vadito Amphibolite</td>
<td>Various mafic metavolcanics with interlayered metaclastics and metavolcaniclastics. (See McCarty, 1983).</td>
<td>700 (L)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 (M) = Montgomery, 1953; (N) = Nielsen, 1972; (L) = Long, 1976
2 Relative ages of Ortega and Vadito Groups based partially on criteria in Rio Mora area by Grambling and Codding, 1982; and Grambling, 1983.
3 The Hondo Schist is recognized in the northern Picuris only, and may be correlative with the Piedra Lumbré Formation.
4 According to Grambling (pers. commun., 1984) the Rb-Sr, mineralogical change is metamorphic rather than original sedimentary, thus the Rb-Sr system is preferred.
5 In the southern Picuris, the Piedra Lumbré - Pilar contact is a major fault (Holcombe and Callender, 1962). If the Hondo Schist is equivalent or partially equivalent to the Piedra Lumbré, then the Marquenas - Piedra Lumbré contact must also be a major fault.

FIGURE 2. Lithologic column for Precambrian rocks of the Picuris Range, New Mexico.
an underlying metavolcanic terrane (the Vadito Group). Grambling and others (1983) recognized a viridine-bearing (Mn-rich andalusite) horizon which defines the contact between the Ortega Group and the underlying Vadito Group in the Rio Mora area, the Truchas Peak region, and the western Picuris Range near the town of Pilar. William and Wobus (1984) have identified the same marker horizon in basa Ortega Quartzite throughout the Tusas Range. Viridine has been found near the base of the Ortega Quartzite during recent mapping near U.S. Hill in the eastern Picuris Range. The presence of this unusual, perhaps time-stratigraphic, horizon establishes a firm stratigraphic correlation between uplifts across north-central New Mexico.

STRUCTURE

The dominant east-west fabric of the Picuris Range is due to a series of large-scale, cast-to-east—northeast-trending, tight to isoclinal fold overturned to the north (Montgomery, 1953). The major folds are the Copper Hill anticline to the south and the Hondo syncline to the north (Fig. 3). These folds are cut by three generations of faults (Nielsen and Scott, 1979), from oldest to youngest (1) shear zones subparallel to axial surfaces of major folds, (2) oblique-slip faults which trend either northeast—southwest or northwest—southeast (e.g., the Pilar—Vadito fan of Montgomery, 1953), and (3) normal faults of late Tertiary age.

Structural-fabric Elements

Deformational fabrics have been defined on the basis of detailed mapping and structural and thin-section analyses of rocks in the northern Picuris Range, in an area that includes both limbs of the Hondo syncline. The terms discussed below are defined in Holcombe and Callender (1982).

Folding events are denoted F, and F" with associated axial planar cleavages S, and S,. L₀ and L₁ are intersection lineations of surface designated by subscripts. In most rocks compositional layering is thought to represent true stratigraphic bedding (S₀) due to well-preserved sedimentary structures within layering. S₀, the earliest cleavage, appears as a schistosity in micaceous rocks of the Vadito Group in the southern Picuris Range (Holcombe and Callender, 1982). S₀ is generally parallel to bedding (S₀), thus S₀ and S₁ will be included together as S₀/S₁. S₂ is the second-generation penetrative cleavage and appears to be dominant in both the southern and northern Picuris Range schistose rocks.

This study has identified a persistent schistosity generally parallel or subparallel to compositional layering (S₁). In most samples this schistosity is the only cleavage present. In several samples collected from fold noses, in which the schistosity is axial planar to the fold, it appears that only compositional layering is folded. This suggests that the schistosity is S₁ and cuts bedding in F₁ folds. However, if this fabric is S₀, one would expect to see the more dominant S₀ cleavage superimposed on it. In fact, only one thin section shows convincing evidence for both S₀ and S₁. In this sample, from a quartz—mica schist of the Rinconada Formation, S₀ appears as oriented micas in quartz-rich layers of S₁ differentiated layers (Fig. 4). The appearance of S₀—S₁ relationships such as this, in which a segregated S₁ crenulation-cleavage folds an earlier S₀ schistosity, is highly dependent on the quartz/mica ratio of the schist. A ratio close to 50/50 is most conducive to the visibility of both S₀ and S₁. This overprint geometry has commonly been described in Proterozoic rocks of northern New Mexico (Codding, 1983; McCarty, 1983). It is not known whether this sample is representative of the area and both S₀ and S₁ exist in these rocks, or whether the sample is atypical and there is only one penetrative cleavage. Holcombe and Callender (1982) noted that although both S₀ and S₁ were recognized in Piedra Lumbe and Vadito Group rocks, S₀ was not positively identifiable in the Rinconada Formation or Pilar Phyllite in their study area. It is possible that in most samples of Ortega Group rock both S₀ and S₁ do not appear together because either S₀ has obliterated S₁, or the quartz/mica ratio was not appropriate for the mutual development of S₀ and S₁. Alternatively, the sample may be a special case and either S₀ or S₁ is not developed in the northern Picuris Range.

Both S₀/S₁ and S₁ are locally overprinted by several less pervasive, weak crenulation cleavages (S₂). The various S₂ cleavages are difficult to separate and are not considered important in the deformational geometry.

It is generally impossible to distinguish S₀ and S₁ in outcrop. Compositional layering (S₀) is cut by a subparallel axial-plane cleavage (S₂).

![FIGURE 3. Generalized geologic map of Precambrian rocks of the Picuris Range, New Mexico. After Montgomery (1953), Nielsen (1972), and Williams (1982).](image-url)
In the northern Picuris Range both limbs of the Hondo syncline dip about 55° to the south. Because this and many minor folds are very tight, one cannot say whether S_1 or S_2 is axial planar to those folds. One way to approach this problem is to look at refolding patterns.

Refolding

Although most workers agree that the Picuris rocks have experienced multiple deformations, the absence of map-scale refolded fold patterns (other than those formed by minor fold structures) in the Ortega Group is puzzling. Montgomery (1953) mapped one very small type-III fold (Ramsay, 1967) closure on the southern limb of the Hondo syncline in the northern Picuris, but the structure does not appear on the map by Nielsen (1972). Exposure is very poor in this area. Recent mapping there yielded no convincing evidence of fold closure, although a detailed structural survey in the northern Picuris has revealed that refolding does occur on a scale of less than 100 m. In several places it was found that S_1/S_2—S_3, structural vergence and stratigraphic facing disagreed. That is, older units were found to core F_1 synforms and younger units cored antiforms, thus forming synformal anticlines and antiformal synclines (Fig. 5). The small distances between these reversals imply that at least one of the two folds involved has a wavelength on a scale of tens of meters. These small folds do not seem to interfere greatly with the larger-scale folds that form the Hondo syncline. The interference pattern is probably between minor F_1 folds and minor F_2 folds. If the major F_1 folds are enormous, it is not clear why two relatively small sizes of parasitic folds (centimeters and tens of meters in wavelength) but none of intermediate map-scale size folds would appear, unless either F_1 formed shear zones rather than large folds, or F_1 and F_2 were coaxial so that local reversals in structural vergence and stratigraphic facing are the only evidence of refolding.

There are two ways of approaching the problem of S_1—S_2. The first method is based on work by Holcombe (pers. comm. 1983) in which he has tentatively recognized a correlation between stratigraphy, deformation, and porphyroblast growth in schists of the Picuris Range. Holcombe found that not only does the appearance of axial-plane cleavages depend on stratigraphic/geographic position, but that the growth of certain metamorphic minerals can be related temporally to cleavage formation. The second approach is through a study of folding and refolding within the area.

Folds

Folds in the Picuris Range vary in size from the Copper Hill anticline—Hondo syncline with wavelengths of 4 or 5 km to folds only millimeters across. A complete description of various fold types was given by Nielsen (1972). Nielsen believed that extremely large isoclinal F_1 folds (so large that the entire Picuris Range may be on one limb) were in turn tightly folded by east—west-trending folds coaxial with F_1, (i.e., the Copper Hill anticline and Hondo syncline) whose axial planes dip steeply south. These F_1 folds were later broadly crossfolded by F_2, forming the present outcrop pattern of gentle, doubly plunging structures shown by Montgomery (1953) and Nielsen (1972).

This sequence of folding is consistent with descriptions of structures elsewhere in northern New Mexico. In the Rio Mora area, Grambling and Codding (1982; pers. comm. 1983) have described several map-scale isoclinal F_1 folds refolded by nearly upright, tight F_2 folds, plus rare S_1 crenulations. In the Tusas Mountains, M. L. Williams (pers. comm. 1984) has recognized a set of large, tight, upright F_2 folds with wavelengths of about 1 km, which locally fold a pre-existing layer-parallel cleavage (S_2); both are cut by several later F_3 crenulations.
Shear fabrics are common in quartzites of the Picuris Range. In the northern Picuris Range parallel elongate quartz grains commonly show a preferred crystallographic orientation along with sweeping extinction and strain ribbons. In one area on the north limb of the Hondo syncline the R, quartzite (Fig. 2) exhibits an extreme mylonitic texture (Fig. 6). It is not yet known if this outcrop represents a local zone or is part of a larger shear zone. Holcombe (pers. comm. 1983) has recognized a complex, anastomosing set of minor S,–related ductile-shear zones (less than 1 m across) within the Embudo Granite in the southern Picuris Range. Callender and Holcombe (pers. comm. 1983) have speculated that thin, micaceous layers within the Ortega Quartzite and underlying metatexites in the Pilar area may be local areas of high-shear strain. It is not yet known whether ductile-shear zones make up a significant part of the deformation of the Picuris Range, nor whether major zones of ductile shear exist there at all. An interesting speculation is that F deformation had a major component of subhorizontal shear and the S, fabric was well developed in local shear zones only. It is possible that this localized shearing was responsible for the destruction of all large F, fold noses.

STRUCTURAL ANALYSIS

I have made several preliminary structural analyses designed to detect both geographic and stratigraphic structural variations within rocks of the northern Picuris Range. In terms of geographic variations, no significant changes in So/S, S, and L, appeared from the north to the south limb nor from the east to the west along the axis of the Hondo syncline. Local areas of anomalous fold axis and S,–plane orientations are attributed to effects of broad F, folding and Phanerozoic faulting. However, in terms of stratigraphic variations of particular interest is an analysis of S, S, and L, for Ortega Group rocks versus the schist of the Hondo Canyon. In the southern Picuris Range, Holcombe and Callender (1982) identified a strong S, in schists of the Piedra Lumbré Formation, but found no definite S, cleavage in Rinconada Schist and Pilar Phylite. Furthermore, they documented a change in both vergence and L, orientation between the Pilar and Piedra Lumbre, and established that the Piedra Lumbre is internally transposed. They proposed that the S,–S,–S, vergence change across the Pilar–Piedra Lumbré contact is probably due to a single S, having been superimposed on slightly discordant S, planes across a boundary fault. It is therefore crucial for an understanding of the Piedra Lumbré–Hondo Schist situation to examine S,–S,–S, relations between these rocks in the northern Picuris Range.

Stereograms for the fabric elements S, S, and L, in the Ortega Group (Ortega Quartzite, Rinconada Formation, Pilar Phylite) and the Hondo Schist (Piedra Lumbré of Nielsen, 1972) are shown in Figure 7. Both F, deformation, and refraction and fanning of S, and S, cleavages are probably responsible for much of the scatter of points. S, S, and S, for both rock sequences have about the same east–west strike. The only significant variation in their dips is that S, for the Hondo Schist dips about 10° steeper than does the 55° dip of the other S, S, and S, planes. This 10° variation in S, S, may represent an original S,–S, orientation difference between the two groups, but is not large enough to rule out errors in measurement or variations due to cleavage refraction. The most conspicuous difference between these data and those of Holcombe and Callender (1982) is in the orientations of L,. Here both groups show similar southwest plunging statistical S,–L, maxima (Ortega at 239, 37°; Hondo at 247, 32°), although the Hondo Schists show a southeast plunging group at 120, 30° that is absent in Ortega rocks. Holcombe and Callender (1982) found that L, for Ortega Group rocks plunged southwest, whereas L, plunged southeast for Vadito Group rocks.

Although the data set is not shown, L, and L, intersection lineations define a fairly consistent orientation of 55° to the south, indicated by L, on the summary stereoplot of Figure 7.

Results suggest that if there is an early S, S, structural disparity between the Ortega and Hondo Schists, the disparity is too small to detect within the analytical error of measurements. S, fabrics appear to have been imposed identically over the two rock groups, suggesting that if their boundary is a fault, the major motion occurred prior to F, deformation. Both groups show similar southwest-plunging L, patterns, although a southeast-plunging trend in the Hondo Schists may be related to an undocumented but possible S,–S, disparity.

SUMMARY AND CONCLUSIONS

It is not yet clear whether there are two regional, penetrative, axial-plane cleavages (S, and S,) in the Precambrian rocks of the northern Picuris Range. The existence of two cleavages is suggested by a single thin section showing an S,–S,–S, microfabric relationship, and by structural-vergence measurements in the field which imply refolded folding. The style of F, deformation is unclear; no map-scale F, folds have been recognized, but minor F, folds or shear zones do exist. One possibility is that F, deformation is concentrated along shear zones and S, is thus localized. F, has formed tight, gently plunging folds overturned to the north and a strong, penetrative axial-plane cleavage (S,), which are the dominant structural features in the northern Picuris Range.

The Hondo Schist may or may not be stratigraphically equivalent to the Piedra Lumbré Formation of the southern Picuris. Although the Piedra Lumbré seems to have been deformed during F, along with the Vadito Group, it is likely that the Piedra Lumbré is in fault contact with both the Ortega and Vadito Groups and that the faulting predated, or was concurrent with, F, deformation. A preliminary structural analysis comparing the fabrics of the schist of Hondo Canyon with Ortega rocks has shown that the only structural difference between them is a 10° difference in the dips of modal S, S,. This variation may be within analytical error, and, therefore, does not unequivocally demonstrate pre-F, difference between these two rock groups. If the contact between the Pilar Phylite and the schist of Hondo Canyon is not a fault, and the schist of Hondo Canyon is equivalent to the Piedra Lumbré For-
formation, then the schist of Hondo Canyon is a more complete section than the Piedra Lumbre in the southern Picuris Range. However, until more work is done in and around the schist of Hondo Canyon, it seems preferable to keep the schist of Hondo Canyon separate from the Piedra Lumbre Formation, the Vadito Group, and the Ortega Group.

ACKNOWLEDGMENTS

This paper stems from research begun in partial fulfillment of Ph.D. requirements at the University of New Mexico. Financial support was provided by the Department of Geology, University of New Mexico, and by National Science Foundation grant EAR-8018506 to J. F. Callender.

Special thanks go to J. F. Callender and J. A. Grambling for guidance and critical manuscript reviews. R. C. Holcombe and M. L. Williams provided much additional insight. Reviews by K. C. Condie and J. C. Reed, Jr. improved this paper considerably.

REFERENCES

———, and Scott, T. E., 1979, Precambrian deformational history of the Picuris Mountains, New Mexico: New Mexico Geological Society, Guidebook 30, pp. 113-120.

