Eustatic and tectonic controls on cyclic sediment accumulation patterns in lower-middle Pennsylvanian strata of the Orogrande Basin, New Mexico

Thomas J. Algeo, James L. Wilson, and Kyger C. Lohmann

in:

This is one of many related papers that were included in the 1991 NMGS Fall Field Conference Guidebook.

Annual NMGS Fall Field Conference Guidebooks

Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico.

Free Downloads

NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, and other selected content are available only in print for recent guidebooks.

Copyright Information

Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. No material from the NMGS website, or printed and electronic publications, may be reprinted or redistributed without NMGS permission. Contact us for permission to reprint portions of any of our publications.

One printed copy of any materials from the NMGS website or our print and electronic publications may be made for individual use without our permission. Teachers and students may make unlimited copies for educational use. Any other use of these materials requires explicit permission.
EUSTATIC AND TECTONIC CONTROLS ON CYCLIC SEDIMENT ACCUMULATION PATTERNS IN LOWER-MIDDLE PENNSYLVANIAN STRATA OF THE OROGRANDE BASIN, NEW MEXICO

THOMAS J. ALGEO, JAMES L. WILSON, and KYGER C. LOHMANN

Department of Geology, University of Cincinnati, Cincinnati, Ohio 45221-0037; 1516 Patio Drive, New Braunfels, Texas 78130;
Department of Geological Sciences, University of Michigan, Ann Arbor, Michigan 48109-1063

Abstract—The Lower-Middle Pennsylvanian Gobbler Formation and equivalent units of southern New Mexico is a 250-450 m thick successions of shallow-marine sediments composed, in part, of 20-25 carbonate shoaling cycles. Cycle tops show evidence of subaerial exposure and meteoric diagenesis, including karstic solution pits, brecciation, cemented and oxidized crusts, and isotopic depletion of carbon in the rock matrix. Basinwide correlative thicknesses are represented in several sections in the western side of the Orogrande Basin. The northern part of the basin, which is characterized by rapid lateral and vertical facies changes, variable cycle thicknesses, shelf-margin progradation, and development of phylloid-algal bioturbs. Cycle thicknesses vary systematically across the basin from 6 m on the western ramp to 9 m on the eastern shelf, reflecting differential rates of subsidence.

INTRODUCTION

Lower and Middle Pennsylvanian strata in south-central New Mexico comprise a 250-450 m thick succession of shallow-marine sequences composed of the Gobbler Formation in the Sacramento Mountains and the Lead Camp Limestone in the San Andres Mountains. These strata were deposited in the Orogrande Basin, an intracratonic ramp formed through segmentation of the southwestern margin of the North American craton during the Permo-Carboniferous Ouachita-Marathon orogeny. The basin was bounded by a high-relief, faulted shelf margin and a low-relief, flexural western ramp, and thus exhibited a fundamental tectonic asymmetry that is reflected in basin-scale differences in lithofacies, patterns of cyclicity and subsidence rates. The goals of this paper are (1) to develop a basinwide cyclostratigraphy, establishing detailed correlations within which to study depositional and tectonic events of the Orogrande Basin in Middle Pennsylvanian time; (2) to examine the sedimentology of the Gobbler Formation, and in particular, contrast sequences from opposite margins of the Orogrande Basin; and (3) to discuss the relative importance of eustatic versus tectonic controls on Gobbler Formation cyclicity.

Regional stratigraphy

In southern New Mexico, a moderately thick (≤2500 m) Permo-Pennsylvanian intracratonic-basin succession oversteps a thin (0-800 m) lower-middle Paleozoic passive-margin succession along a major Mississippian-Pennsylvanian unconformity (Fig. 1). Within the study area, the Gobbler Formation (Sacramento Mountains), Lead Camp Limestone (San Andres Mountains) and equivalent strata in the Hueco Mountains are composed of 50-125 m of shallow-marine crossbedded sandstones, shales and limestones of Atokan age, overlain by 175-325 m of shallow-marine and basinal limestones and marls of late Atokan and Desmoinesian age. Marine sedimentation persisted in the Orogrande Basin through Late Pennsylvanian time, but basin subsidence was terminated by regional uplift in the early Wolfcampian, and Permain sedimentation was largely restricted-marine and continental in character. For a detailed summary of the Paleozoic stratigraphy of southern New Mexico, see Kottlowski et al. (1956), Pray (1961), and Kottlowski (1963).

Regional paleogeography

This study includes eight stratigraphic sections in the San Andres and Sacramento Mountains of south-central New Mexico and in the Hueco Mountains of west Texas (Fig. 2). The Gobbler Formation and correlative units were deposited within the Orogrande Basin, a 200-
The Mockingbird Gap Hills, Rhodes Canyon, and Hembrillo Canyon sections are located on the White Sands Missile Range, and permission of the U.S. Army is required for access.

km-long intracratonic trough surrounded by highlands of the Pedernal uplift to the northeast, the Diablo platform to the southeast, and the Florida uplift to the southwest (Fig. 3; Kottlowski, 1963; Meyer, 1966). The basin was bounded on its western margin by the broad, low-relief Robledo ramp and on its eastern margin by the narrow, high-relief Sacramento shelf, which was divided into two tectonic blocks by the fault-bounded, intrashelf Alamo trough. The name Alamo trough is a new term introduced in this paper. The tectonic asymmetry of the basin is reflected in eastward displacement of its depositional axis (Fig. 3).

Age assignments in Lower to Middle Pennsylvanian strata considered here are based largely on fusulinid biostratigraphy. In the San Andres Mountains, Kottlowski and others (1956) identified the Derryan (Atokan)-Desmoinesian contact based on first occurrence of *Fusulina* (now *Beedeina*; see Bachman and Myers, 1975) and the Desmoinesian-Missourian contact based on first occurrence of *Triticites* in their measured sections at Mockingbird Gap, Rhodes Canyon and Hembrillo Canyon. Although their Atokan-Desmoinesian contact appears to crosscut cycle boundaries (Fig. 4), it may be stratigraphically too high in the more basinal sections (e.g., Hembrillo Canyon), in which the paucity of *Beedeina* in shalier beds suggests facies control of fusulinid distribution.

In the Sacramento Mountains, age assignments for basal Gobbler Formation units are uncertain. Benne (1975) identified strata of Morrowan age in the southern part of the range based on conodonts and brachiopods, although Wilson (1989) observed Derryan (Atokan) fusulinids (e.g., *Profusulinella, Beedeina*) near the base of sections in both the northern and southern Sacramento Mountains. The Atokan-Desmoinesian contact falls within the first cycle set (Fig. 5) based on extrapolation of established contacts in the San Andres Mountains (Fig. 4). The contact between the lower and upper Desmoinesian Series is probably located within the third cycle set.

SEDIMENTOLOGY

Lithofacies

Shallow-marine units of the Gobbler Formation and equivalent units largely consist of fossil wackestones and packstones containing an open-marine biota, including echinoderms, bryozoans, brachiopods, phylloid algae, fusulinids, endothyrids, tubular foraminifera, rugose and tabulate corals, *Komia* (a small dendroid stromatoporoid), and *Chaetetes* (a sponge-like organism of uncertain affinity; Fig. 7A). Such muddy fusiformerous units are usually thick bedded and structureless owing to thorough bioturbation. Argillaceous mudstones and wackestones representing deeper-water conditions are dominant in basinial areas and as the basal units of shoaling-upward cycles (Fig. 7B). These units are dominated by an *in-situ* fauna composed of sponges and long-spined brachiopods. Widespread chertylization probably reflects diagenetic re-
FIGURE 4. Stratigraphic cross section of the four study locales in the San Andres and Hueco Mountains. Correlations are based on two-level cycle hierarchy; position of Derryan (Atokan)-Desmoinesian and Desmoinesian-Missourian contacts are based on fusulinid biostratigraphy of Kottlowski et al. (1956). See Fig. 5 for cross-section location.
FIGURE 5. Stratigraphic cross section of the four study locales in the Sacramento Mountains. The lower part of the Gobbler Formation was not measured in the Fresnel and Bug Scuffle Canyon sections owing to incomplete exposure along fault escarpments. Correlations are based on two-level cycle hierarchy; approximate position of the Atokan-Desmoinesian contact within the first cycle set is extrapolated from the Mockingbird Gap Hills section (Fig. 4). Stratigraphic positions of Bug Scuffle bioherms (Algeo, 1989) and Alamo trough clastic units (Van Wagoner, 1977) are approximate.
chosen for systematic analysis owing to the predominance of muddy carbon-isotopic analyses were run on matrix micrites, which were cycle tops and provide additional evidence of subaerial exposure. About cementation of burrows, as a consequence of which later flux of silica-lime facies in the Gobbler Formation and equivalents (see Given and Orogrande Basin cycles (Fig. 5). Rapid facies transitions occurred owing to changes in water depth and/or energy conditions in the shallow-marine environment. Resedimentation of shelf-margin material occurred through grain flows with channelized bases and through basinward-oriented debris flows, which developed by repeated slumping of the prograding Sacramento shelf margin along arcuate and sinuform slump surfaces (Fig. 10A).

Slope strata, best exposed in the lower part of the carbonate unit at Dog Canyon, are characterized by thin-bedded calcite turbidites inter-
bedded with basinal shales, synsedimentary slumping (Fig. 10B), and phylloid-algal bioherms (Fig. 5). Such features are common downslope from carbonate shelf margins and suggest water depths from 100 to 600 m (Wilson, 1969). An exceptionally large algal bioherm between Ed and Bug Scuffle Canyons is 25 m wide, several hundred meters long and exhibits multiple growth stages (Fig. 10C). Core facies in this mound are massive beds of unbroken phylloid algae, bryozoa, and Komia. Proximal mound flanks are thick-bedded, steeply dipping (to 35°) units of fragmented phylloid-algal debris, which thin and flatten distally. Slump folds (Fig. 10D) and calcite-filled fractures formed through gliding along decollement surfaces parallel to bedding on steeply dipping mound flanks.

Basinal strata at Bug Scuffle Canyon are characterized by dark-colored, thin-bedded, cherty mudstones and wackestones, laterally continuous units, relatively uniform cycle thicknesses, and weakly developed cycle tops exhibiting limited evidence of subaerial exposure (Fig. 5). The prevalence of chert nodules and beds is probably due to abundant sponge growth in deeper water. Strata on the western ramp are characterized by open-marine carbonates exhibiting even bedding, regular cyclicity, and an absence of structures related to shallow-water sediment transport (Fig. 4). Lateral facies changes occur gradually over 75 km along strike, indicating only a slight increase in water depths at Hembriillo Canyon relative to the Mockingbird Gap Hills.

Progradation of Sacramento shelf margin

The Sacramento shelf margin actively prograded basinward during Desmoinesian time, passing southward through Dog and Ed Canyons but stopping short of Bug Scuffle Canyon (Fig. 11). Shelf-margin progradation is marked by superposition of shelf facies on slope and basinal facies along a scoured surface associated with basinward-oriented debris flows (Fig. 10A). The rate of shelf-margin progradation can be estimated based on the difference in stratigraphic elevation of the shelf-to-basin transition at Dog and Ed Canyons. The contact is 30 ± 5 m higher stratigraphically at the latter locale, which, at an average basinal sedimentation rate of 39 ± 6 m/Ma (see below), is equivalent to a time interval of 0.75 ± 0.25 Ma. Because the shelf margin did not prograde directly between these locales, the distance between them (9.5 km) must be reduced by the cosine of the angle (ca. 65°) between the sections and the direction of shelf progradation. Thus, the shelf margin prograded about 4.0 km in an interval of 0.75 ± 0.25 Ma, yielding an estimated progradation rate of 5.3± 2.0 km/Ma.

Basin subsidence and cycle thickness

Shoaling-upward cycles in the Gobbler and correlative formations show systematic variation in non-decompacted thicknesses across the basin, reflecting differential rates of sediment accumulation and basin
FIGURE 8. Cycle-top structures. A, Karstic solution pit lined by cemented laminar crust and infilled by chertified fossil lag. B, Solution-enlarged joints, accented by later chertification. C, Coarse-grained echoderm-rich fossil lag overlying oxidized ferruginous crust at top of cycle. D, Diagenetic enhancement of burrowing at top of underlying cycle due to downward flux of silica from cherty basal unit of overlying cycle. bs = cycle-base unit; fc = ferruginous crust; j = joint; lc = laminar crust; lg = lag; sp = solution pit; tp = cycle-top unit. Arrows indicate position of cycle tops. Lens cap is 5 cm in diameter; rod in D is marked in 1 ft increments.

Sedimentation rates and cycle periods

Modal cycle thicknesses of the Gobbler Formation, in conjunction with the total thickness and duration of the Desmoinesian Series, allow calculation of long-term accumulation rates and cycle periods (Table 1). Within the study area, the Desmoinesian Series averages 167.5 ± 7.5 m in thickness on the western ramp and 275 ± 25 m on the eastern shelf. Current best estimates of the duration of the Desmoinesian Epoch are 4.0 Ma (Klein, 1990) to 4.5 Ma (Harland et al., 1989). This yields long-term accumulation rates of 39 ± 6 m/Ma on the western ramp and 65 ± 10 m/Ma on the eastern shelf. Although the Desmoinesian Series is incompletely exposed in basin areas, cycle-set thicknesses suggest that basinal accumulation occurred at about 60% of the rate of shelf accumulation, yielding an estimated long-term accumulation rate of 39 ± 6 m/Ma for basin strata. A modal cycle thickness of 6 ± 0.75 m and a long-term accumulation rate of 39 ± 4 m/Ma for the western ramp yield a modal cycle periodicity of 150,000 ± 35,000 yrs, while corresponding estimates of 9 ± 0.75 m and 65 ± 10 m/Ma for the eastern shelf yield a modal periodicity of 140,000 ± 35,000 yrs.

CONTROLS ON CYCLICITY

Several observations are relevant in identifying the dominant controls on cyclicity in Lower-Middle Pennsylvanian strata of south-central New Mexico. Cycle sets, and in some cases individual shoaling-upward cycles, are correlatable across the basin over distances of tens of kilometers, requiring a mechanism of at least basinwide operation. Subaerial exposure of cycle tops in both shelfal and basinal sequences demonstrates relatively large-amplitude (probably a few tens of meters or more) changes in relative sea level. Average cycle periods of 140,000 to 150,000 yrs indicate high-frequency changes in relative sea level. The only known mechanism to produce such large-amplitude, high-frequency changes of relative sea level over significant lateral distances
FIGURE 9. Carbon-isotope stratigraphy of matrix micrites in the Mockingbird Gap Hills section. Note that most cycle tops \((T) \) exhibit negative \(\delta^{13}C \) excursions and that some cycle sets (especially the third and fourth) show greater cycle-top excursions toward the top of the cycle set (arrows). Cumulative plot of \(\delta^{13}C \) versus depth below individual cycle tops (inset) demonstrates that \(^{13}C \) depletion occurs mainly at or just below cycle tops and that relatively heavy \(\delta^{13}C \) values characterize cycle bases (at depths of 3–15 m), a pattern typical of all study locales.

FIGURE 10. Sedimentary structures of slope environments. A, Debris flows associated with basinward progradation of Sacramento shelf margin (Dog Canyon). Note multiple arcuate and sineform slump surfaces (dashed). Vegetated hillslope below debris flow units conceals thin-bedded slope deposits similar to B. B, Cohesive synsedimentary slide in thin-bedded top-of-slope calcitic turbidites (upper and lower contacts dashed; Dog Canyon). Note flat-lying beds above and below slide. Apparent offset in middle of photo (arrows) is due to a shift in perspective. C, Phylloid algal mound north of Bug Scuffle Canyon in southern Sacramento Mountains. Note multiple growth stages (arrows). D, Soft-sediment slump fold in biothermal flank beds (dashed), accentuated by thinned and contorted chert nodules. \(c \) = mound core; \(df \) = debris flow; \(f \) = mound flank; \(sf \) = slump fold; \(sl \) = slide. Outcrop scales for center of view.
 Although shoaling-upward cycles in the Gobbler and correlative formations are primarily eustatic in origin, tectonic controls influenced the facies composition and thickness of cycles at individual locales. This is most evident on the eastern basin margin, where facies character changes abruptly from shelf to trough or basinal locales. Some units, e.g., calcitic turbidites, grain flows and debris flows associated with shelf and trough margins, reflect processes of sediment redistribution and are probably auto-cyclic in origin.

Cycle sets reported here record long-term (ca. 1.0 Ma) variation in the ratio of carbonate-to-shale accumulation, although the source of such variation is unknown. Eustatic control, for example, may have occurred through cyclic variation in the elevation of successive sea-level highstands, altering rates of carbonate production. Alternatively, tectonic control may have occurred through episodic basin subsidence or highland uplift, inducing pulses of fine-grained elastic influx which limited or diluted carbonate production. Two observations favor a eustatic origin: (1) greater cycle-top 13C depletion toward the tops of cycle sets suggests cyclic variation in the elevation of sea-level lowstands, and (2) existence of similar cycle hierarchies in other Carboniferous sections (e.g., Ramsbottom, 1979) requires a globally operative mechanism such as eustasy.

CONCLUSIONS

1. Lower-Middle Pennsylvanian strata in south-central New Mexico (Gobbler Formation and equivalent units) comprise a 250–450 m-thick succession of shallow-marine elastics and limestones exhibiting shoaling-upward cyclicity.

2. Shoaling cycles are 3 to 20 m in thickness, grade upward from shaly and spiculitic deep-water marls to clean shallow-water limestones, and show evidence of subaerial exposure at cycle tops.

3. Negative 8°C excursions at or just below cycle tops document early meteoric diagenesis and suggest development of soil horizons on subaerially exposed cycle tops.

4. Both shelf and basinal locales show petrographic and isotopic evidence of subaerial exposure, although such exposure appears to have been more limited in intensity and, possibly, duration in basinal settings.

5. Groups of 4–7 shoaling cycles comprise cycle sets 20 to 80 m thick, reflecting long-term (ca. 1.0 Ma) variation in the carbonate-to-shale accumulation ratio.

6. Cycles and cycle sets provide a two-level hierarchy permitting basinwide correlation of cyclostratigraphic units.

7. The western basin margin was a tectonically stable ramp (Robledo ramp) characterized by cycles of regular thickness and uniform facies composition.

8. The eastern basin margin was a narrow, high-relief shelf (Sacramento shelf) characterized by rapid lateral and vertical facies changes, lateral discontinuity of units, and irregular cycle thicknesses.

9. The Sacramento shelf was transected by the tectonically active Alamo trough, through which elastics derived from highlands to the east were channeled basinward.

10. The Sacramento shelf margin prograded basinward at a rate of 5.3 ± 2.0 km/Ma during the Desmoinesian Epoch.

11. Systematic variation in modal cycle thicknesses across the basin (9 m on the eastern shelf vs. 6 m on the western ramp) reflect differential rates of sediment accumulation and subsidence on the eastern and western basin margins.
12. In conjunction with modal cycle thicknesses, long-term accumulation rates of 39 ± 4 m/Ma for the western ramp and 65 ± 10 m/Ma for the eastern shelf yield estimated cycle periods of 150,000 ± 35,000 yrs and 140,000 ± 35,000 yrs, respectively.

13. Evidence of large-amplitude, high-frequency changes of relative sea level operating over significant lateral distances supports a glacioeustatic mechanism associated with the Permo-Carboniferous Gondwanan Ice Age for genesis of Gobbler Formation shoaling cycles.

14. A eustatic origin for cycle sets is suggested by increasing 14C depletion toward cycle-set tops and by existence of similar cycle hierarchies in other Carboniferous sections.

ACKNOWLEDGMENTS
T. J. Algeo received financial support from a National Science Foundation Graduate Fellowship and Grants-in-Aid from the American Association of Petroleum Geologists, Sigma Xi, and the Turner Fund of the University of Michigan Department of Geological Sciences. J. L. Wilson conducted field research under National Science Foundation Grant GA-10147. Bruce H. Wilkinson of the University of Michigan provided invaluable guidance and additional support to the senior author under National Science Foundation Grants EAR-86-07970 and EAR-88-03910. Isotopic analysis was conducted at the University of Michigan’s Stable Isotope Laboratory under the supervision of Kyger C Lohmann. The manuscript benefited from reviews by Philip Heckel, George de V. Klein, Michael Party and Rick Sarg. The illustrations were drafted by Susan Fast of the University of Michigan and revised by Dave Tucker of Exxon Company, U.S.A. Thanks to the U.S. Army for permission to conduct fieldwork on the White Sands Missile Range and to Max Canestorp for on-base assistance.

REFERENCES