Fossil mammals and the early Eocene age of the San Jose Formation, San Juan Basin, New Mexico

Spencer G. Lucas and Thomas E. Williamson
1992, pp. 311-316. https://doi.org/10.56577/FFC-43.311

in:

This is one of many related papers that were included in the 1992 NMGS Fall Field Conference Guidebook.

Annual NMGS Fall Field Conference Guidebooks

Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico.

Free Downloads

NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, and other selected content are available only in print for recent guidebooks.

Copyright Information

Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. No material from the NMGS website, or printed and electronic publications, may be reprinted or redistributed without NMGS permission. Contact us for permission to reprint portions of any of our publications.

One printed copy of any materials from the NMGS website or our print and electronic publications may be made for individual use without our permission. Teachers and students may make unlimited copies for educational use. Any other use of these materials requires explicit permission.
This page is intentionally left blank to maintain order of facing pages.
FOSSIL MAMMALS AND THE EARLY EOCENE AGE OF THE SAN JOSE FORMATION, SAN JUAN BASIN, NEW MEXICO

SPENCER G. LUCAS1 and THOMAS E. WILLIAMSON2
1New Mexico Museum of Natural History, 1801 Mountain Road NW, Albuquerque, New Mexico 87104-1375; 2Department of Geology, University of New Mexico, Albuquerque, New Mexico 87131-1116

Abstract—Fossil mammals from the San Jose Formation in the San Juan Basin are the only means by which an age can be assigned to the San Jose Formation. These mammals indicate an early Eocene (middle Wasatchian, Lysitean) age for the entire San Jose Formation except its basal strata, which have not produced age-diagnostic fossils. Selected, age-diagnostic fossil mammals from the San Jose Formation are illustrated here.

INTRODUCTION

The San Jose Formation in the San Juan Basin of northwestern New Mexico and southwestern Colorado (Fig. 1) is as much as 590 m thick and has an outcrop area of 8500 km², making it the most extensively exposed Laramide sedimentary unit in New Mexico (Baltz, 1967; Smith et al., 1985; Smith, 1988; Smith and Lucas, 1991). It was deposited by high-energy, low-sinuosity streams with extensive, muddy floodplains and contains diverse vertebrate fossil assemblages that have been known for almost 120 years (Lucas, 1977; Lucas et al., 1981). Indeed, the only means by which the age of the San Jose Formation has been determined is by its vertebrate fossils, specifically its fossil mammals. Here, we review the age of the San Jose Formation based on fossil mammals. NMMNH refers to the New Mexico Museum of Natural History, Albuquerque.

MAMMALIAN BIOCHRONOLOGY

The North American land-mammal "ages"—Cenozoic time in western North America has been calibrated by a sequence of North American land-mammal "ages" (NALMAs) since the work of Wood et al. (1941). NALMAs, as originally conceived by Wood et al. (1941), are based on "type faunas," not on stratotype sections. Thus, they are not stage-ages in the formal stratigraphic sense, but are biochronological units sensu Williams (1902), that is, intervals of geologic time during which particular types of mammals lived. In a sense, the "type faunas" of the NALMAs could be viewed as assemblage zones, and each NALMA as the time equivalent to each assemblage zone, just as a biochron (biochronological unit) can be viewed as the time equivalent to a zone (biostratigraphic unit). Most vertebrate paleontologists, however, prefer not to be constrained too closely by the stratigraphic distribution of the mammalian fossils that represent each NALMA. Instead, they base age determinations on a less precise, and more abstract, biochronological concept of an aggregate "fauna" (coeval mammals) even if stratigraphic ranges demonstrate some lack of synchrony among the mammals of a NALMA. Such concepts, particularly a failure to pursue stratotypic definitions of NALMAs, has reduced their precision in correlation. Yet, despite this, NALMAs continue to provide a robust framework for the correlation of the nonmarine mammal-bearing Cenozoic strata of western North America.

Wasatchian NALMA

The fossil mammals from the San Jose Formation have long been assigned a Wasatchian age. Wood et al. (1941, p. 9) based the Wasatchian "on at least the upper part of the Wasatch group of southwestern Wyoming." They made specific reference to the Wasatchian mammal faunas of the Wind River and Bighorn basins of Wyoming as the type faunas of the Wasatchian NALMA.

Correlation of the Wasatchian land-mammal "age" with the global standard chronostratigraphic scale indicates it straddles the Paleocene-Eocene boundary (Fig. 2). This correlation is based on a well-established biochronology that indicates the French Sparnacian Stage is late

![Figure 1](https://example.com/san_jose_map.png)

FIGURE 1. Location map of San Jose Formation (after Smith and Lucas, 1991).

![Figure 2](https://example.com/intercontinental_correlation.png)

FIGURE 2. Intercontinental correlation of the Wasatchian and adjacent NALMAs (from Lucas, 1984a).
Paleocene, not early Eocene as believed by some previous workers (e.g., Gingerich, 1976; Rose, 1981). In the mixed marine-nonmarine facies of the London-Belgian-Paris basin of western Europe, the beginning of Eocene time, the base of the Ypresian, is approximated by the base of the London Clay (= Argile d’Ypres). French Sparnacian mammal faunas are equivalent to pre-London Clay mammals in Great Britain, a correlation supported by dinoflagellates (Costa et al., 1978). Fossil mammals indicate the Sparnacian is correlative with much of the Clarkforkian and the early Wasatchian (Lucas, 1984a). Thus, the Paleocene-Eocene boundary is not in the Clarkforkian, but in the Wasatchian, a conclusion also supported by palynological correlations (Wing, 1982).

FOSSIL MAMMALS FROM THE SAN JOSE FORMATION

Lucas et al. (1981, table I) last provided a comprehensive listing of the fossil mammals from the San Jose Formation. A variety of new taxa and taxonomic modifications relevant to this list have appeared since 1981, but most need not concern us here because they do not affect age determinations based on fossil mammals. Fossil mammals are found in the Regina and Tapicitos Members of the San Jose Formation (Fig. 3).

The early Eocene mammals from the San Jose Formation represent the orders Marsupialia, Eutetata, Carnivora, Proteutheria, Taeloniodonta, Tiliodontia, Pantodontia, Insectivora, Leptictida, Pantolestida, Primates, Rodentia, “Condylarthra,” Perissodactyla and Artiodactyla. Characteristic Wasatchian taxa include the pantodont Coryphodon molestus (Fig. 4A), the taeniodont Ectogenus giliformis (Fig. 4B-C), the creodont Oryaena (Fig. 4D-E), the rodent Paranyss wortmanni (Fig. 4F-G), the carnivor Didyomictis (Fig. 4H-I), the “condylarths” Meniscotherium chamense (Fig. 5A) and Hyropodus mictalus (Fig. 5M-N), the perissodactyls Hyalectotherium tapirinum (Fig. 5B, H-I), Heptodon (Fig. 5C) and Xenicohippus (Fig. 5F-G) and the artiodactyls Diacodexis secans (Fig. 5D-E, J) and Bunophorus macropterus (Fig. 5K-L).

CORRELATION OF THE SAN JOSE FORMATION

The correlation of the San Jose Formation with other late Laramide deposits in western North America presented here (Fig. 6) relies heavily on the Coryphodon-based biostratigraphy developed by Lucas (1984a, b, c). Through the work of Gingerich (e.g., 1976, 1980, 1989), Bown (1979, 1980), Schankler (1980) and Rose (1981), the biostratigraphy of the Clarkforkian-Wasatchian interval of the Polecat Bench and Willwood Formations in the Clark’s Fork and Bighorn Basins, Wyoming and Montana is the most detailed mammalian biostratigraphy of this time interval in the world. Various biostratigraphic schemes have been used in these rocks (Schankler, 1980; Bown and Schankler, 1982). For the Wasatchian, we employ the terms Gray Bull, Lysite and Lost Cabin in the Bighorn Basin and other basins as Van Houten (1945) used them (Schankler, 1980). Their equivalence to other biostratigraphic terms is readily understood from Schankler (1980, fig. 1) and Fig. 6 of this paper.

Thus, the distribution of Coryphodon species in the Bighorn and Clark’s Fork Basins is considered by us to form the principal reference section for the correlation of other Coryphodon-bearing deposits in North America. However, before the distribution of Coryphodon species in the Clark’s Fork and Bighorn Basins can be freely applied to the correlation of these other deposits, the following qualifications need to be considered:

1. Very few of the identifiable Coryphodon specimens from the Clark’s Fork and Bighorn Basins can be precisely placed in the stratigraphic sequence. This is because only a minority of the specimens have been placed into the published locality schemes. Also, only a minority of the specimens placed into these schemes have come from localities that have been located in measured stratigraphic sections. Nevertheless, many specimens not in the published locality schemes, and many of the specimens in these schemes that are from imprecisely located sites, are accompanied by supplementary locality data that support the biostratigraphic ranges depicted here (Fig. 6).

2. The single, located occurrence of C. subquadratus in the Clarkforkian should not be considered to exemplify the entire stratigraphic range of this species, especially since some occurrences in the Wasatch Formation in southwestern Wyoming are arguably of early Wasatchian (Gray Bull) age.

3. Although C. molestus does not occur in the Lost Cabin of the Bighorn Basin, it does occur in the Lost Cabin Member of the Wind River Formation in the Wind River Basin. Therefore, we consider C. molestus to be a taxon compatible with a Lost Cabin age assignment.

Three species of Coryphodon—C. simus, C. molestus and C. lobatus—are present in the Regina Member of the San Jose Formation in the San Juan Basin (Lucas, 1984a, b, c). Analysis of the large Almagre...
FIGURE 4. Selected fossil mammals from the San Jose Formation. A. Coryphodon molesus, NMMNH P-J153, left M1, occlusal view. B–C. Ectoconus gliriformis, NMMNH P-J8, lateral view of tusk (B) and premolar (C). D–E. Oxyaena sp., NMMNH P-9211, left dentary fragment with C root and P-M, occlusal (D) and labial (E) views. F–G. Paramys womani, NMMNH P-9785, right dentary fragment with P-M, occlusal (F) and lingual (G) views. H–I. Didymictis sp., NMMNH P-9121, right dentary fragment with C and P-M, occlusal (H) and lingual (I) views. All bar scales are 1 cm long.
local fauna from this unit (Lucas et al., 1981) suggests a Lysite age, consistent with the Coryphodon species present. The large local fauna, from the Tapiectos Member of the San Jose Formation (above the Regina Member) contains C. molestus, and this is consistent with a Lysite age assignment as well (Lucas et al., 1981). It should be noted that although C. simus is restricted to the Regina Member, this species is so derived that it is arguably post-Gray Bull. A more refined biostratigraphy of the San Jose Formation is needed, one that will place the various faunal horizons now lumped into two local faunas into a rigorous stratigraphic framework.

The only other Coryphodon—bearing strata in New Mexico are the lower part of the Galisteo Formation, Robinson (1957), Lucas and Kues (1979) and Lucas (1982) reported specimens of Coryphodon from the lower part of the Galisteo Formation near Cerillos in north-central New Mexico. However, these specimens are too fragmentary to allow a species-level identification. The small Wasatchian Cerrillos local fauna includes Ectoigatus and Hyaenotherium sp., Hypsodus powelliatus, cf. Homogalax protapirinus and Hyaenotherium sp. and probably is of Lysite age (Schoch, 1981; Lucas, 1982).

REFERENCES

Lucas, S. G., 1984b, Biostratigraphy significance of Coryphodon species from the Regina Member (lower Eocene), San Jose Formation, San Juan Basin, New Mexico: New Mexico Geology, v. 6, p. 84.

Smith, L. N., 1988, Basin analysis of the lower Eocene San Jose Formation, San Juan Basin, New Mexico [Ph.D. dissertation]: Albuquerque, University of New Mexico, 166 p.

