Black Rocks Protruding Up: The Navajo Volcanic Field

Steven Semken, 2003, pp. 133-138

in:

Annual NMGS Fall Field Conference Guidebooks

Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual *Fall Field Conference* that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico.

Free Downloads

NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only *research papers* are available for download. *Road logs, mini-papers, maps, stratigraphic charts*, and other selected content are available only in the printed guidebooks.

Copyright Information

Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. No material from the NMGS website, or printed and electronic publications, may be reprinted or redistributed without NMGS permission. Contact us for permission to reprint portions of any of our publications.

One printed copy of any materials from the NMGS website or our print and electronic publications may be made for individual use without our permission. Teachers and students may make unlimited copies for educational use. Any other use of these materials requires explicit permission.
INTRODUCTION

The Navajo volcanic field (Gregory, 1917; Williams, 1936) encompasses more than 80 Oligocene to Miocene (ca. 28-19 Ma) volcanoes and intrusive features distributed across the Colorado Plateau in a roughly crescent-shaped array extending from the Cerros de las Mujeres southeast of Zuni, New Mexico, approximately 300 km northwest to the Four Corners and Mesa Verde, thence about 125 km west-southwest to the Monument upwarp on the Utah-Arizona border. As Figure 1 shows, most of the centers in the main part of the field occur along the Defiance, Hogback, and Comb Ridge monoclines, all Laramide structures. Although the volcanoes are not situated along exposed faults, magma ascent was probably facilitated by fractures at depth (Delaney, 1987).

The exhumed and erosion-sculpted igneous features of this potassic mafic province, termed tsézhin íí’ áhí (“black rocks protruding up”) by the Navajo people, include some of the most distinctive and renowned landforms in the Southwest, particularly the 500-meter-tall Ship Rock or Tsé bit’a’í (“rock with wings”), an icon of the Four Corners region (Fig. 2).

Dikes and necks are the most numerous and prominent features in the Navajo volcanic field, but among less-dissected centers in the Lukachukai and Chuska Mountains of western New Mexico and eastern Arizona there are several lava flows (Sonsela Buttes and The Palisades), sills (Beautiful Mountain and Dinehbi-keyah), and at least one maar crater (Narbona Pass; Appledorn and Wright, 1957; Ehrenberg, 1978). Detailed geologic descriptions of the major centers in the Navajo volcanic field can be found in the paper by Akers et al. (1971).

NAVAJO VOLCANISM

The eruptive centers of the Navajo field are maar-diatreme volcanoes. These were formed by hydrovolcanic (or phreatomagmatic) eruptions, in which magma in upward-migrating dikes encounters groundwater, and heats it to steam under confining pressure (Sheridan and Wohletz, 1983; Wohletz and Heiken, 1992). The result is a series of explosive eruptions that excavate a shallow maar crater at the surface, flanked by bedded pyroclastic ejecta. The blasts migrate downward as the aquifer is locally depleted, leaving a conical breccia pipe that incorporates magma and wallrock (Lorenz, 1973, 1986; Ort et al., 1998; Fig. 3). Magma may subsequently intrude the diatreme breccia, lavas may fill or overflow the maar crater, and the upper part of the diatreme often slumps. Depending on how deeply a maar-diatreme volcano is exhumed, various facies from a tuff ring and lava flows to the root zone (feeder dike) may be exposed (Ort et al., 1998).

As a consequence of post-eruptive uplift and dissection of the Colorado Plateau, the majority of the volcanoes in the Navajo field are moderately to deeply exhumed. These are typified by Ship Rock, a neck of tuff-breccia at mid-diatreme, with some slumping visible just below its summit, and shot through with
small branching dikes. Three large and several minor radial dikes are exposed in the surrounding area, but the root zone of the diatreme remains buried. From regional stratigraphy, Delaney and Pollard (1981) estimated that the maar at the Ship Rock volcano was situated approximately 1,000 m above the present-day land surface. The radial dikes are formed of en echelon segments of varying length. Three dikes on the east side of Ship Rock are aligned with small necks that may have fed minor vents within, or flanking, the maar (Delaney and Pollard, 1981).

Surface and near-surface facies are still present at several vents in the Chuska Mountains. Notable among these is the volcano at Narbona Pass (formerly called Washington Pass) near Sheep Springs, New Mexico, where a partly-eroded maar crater flanked by bedded pyroclastics and lava flows, and intruded by three plugs, still exists (Ehrenberg, 1978). The faulted remnant of a possible second crater (Ehrenberg, 1978) occurs about 1 km to the south. Approximately 18 km to the west of Narbona Pass, West Sonsela Butte is a crater formed of bedded tuff and capped by lava; adjacent East Sonsela Butte is capped by three lava flows (Appledorn and Wright, 1957). Figure 4 compares the relative depths of exhumation at Ship Rock, West Sonsela Butte, and Narbona Pass.

PETROLOGY OF THE IGNEOUS ROCKS

The two principal rock types in the Navajo volcanic field are minette and serpentinized ultramafic microbreccia. Minette (Delesse, 1856) is a potassic mica lamprophyre, greenish-grey to black in color, characterized by an aphanitic groundmass of alkali feldspar (typically sanidine), diopside, biotite-phlogopite, and apatite, with phenocrysts of biotite-phlogopite, clinopyroxene, and, less commonly, olivine. Minettes are enriched in potassium (K₂O ~ 6 weight %) and magnesium, and depleted in aluminum; thus, alkali feldspar replaces plagioclase. Most of the minettes in the Navajo volcanic field are mafic, containing about 50 weight percent SiO₂, although felsic minettes with up to 60 weight percent SiO₂ occur at some localities (Ehrenberg, 1978; Roden, 1981).

The origin and emplacement of the Navajo minettes has been of considerable interest to researchers because of the unique chemistry of the rocks and their xenolith population (described below), and because these relatively sparse magmas were the only ones penetrating the Colorado Plateau at the end of the Laramide orogeny (ca. 30 Ma), when magmatism around its borders was voluminous.

Mantle metasomatism, thought to be important in the origins of many alkalic magmas (Bailey, 1984), may have affected the mantle beneath the Colorado Plateau at various times. The origin of Navajo minettes has been variously attributed to partial melting of a K-metasomatized mantle peridotite (Roden, 1981), a melt-depleted and metasomatized peridotite (Schaefer et al., 2000), and a mixture of metasomatized peridotite and Proterozoic mafic mantle intrusions (Carlson and Nowell, 1999, 2001). Proterozoic metasomatism beneath the Plateau is supported by the presence of fluid-derived oxide inclusions in pyrope garnet xenocrysts from the Garnet Ridge locality (Wang et al., 1999). Cenozoic melt metasomatism is supported by the presence of zoned garnets in peridotite xenoliths in minette from The Thumb (Smith and Ehrenberg, 1984). Some metasomatism may be related to volatiles released from the underlying Farallon plate, as its angle of subduction beneath North America increased after Laramide time (Laughlin et al., 1986; Smith et al., 2002).

Fractional crystallization of an ultramafic magma was proposed as an alternative model for minette generation by Roden et al. (1990). The less-common felsic minettes in the Navajo volcanic field are thought to have been derived by fractional crystallization of mafic minette magma in the upper mantle (Roden, 1981).

The emplacement temperature of mafic minette at the Ship Rock dikes was estimated at 1000 ± 75 °C by Delaney and Pollard (1981). Melting experiments on a Navajo mafic minette from Buell Park, Arizona by Esperanca and Holloway (1987) have indicated that emplacement temperatures may have ranged from 1000 to 1200 °C.

Trachybasalt, the extrusive equivalent of minette, forms the flows and shallow plugs in the Chuska and Lukachukai Mountains. The pyroclastic rocks formed by hydrovolcanic eruption in the minette diatremes and maars are referred to as “minette tuff-breccia.” These consist of coarse-sand-sized to gravel-sized fragments of minette and diverse crystalline and sedimentary rocks in a finer comminuted matrix.
Eight Navajo diatremes, mostly clustered along the Defiance and Comb Ridge monoclines (Fig. 1), are composed of an olive-green to brown tuff or microbreccia, rather than minette. These rocks consist of a matrix of serpentine, chlorite, clay minerals, and talc; they contain xenocrysts of olivine, enstatite, chrome diopside, chlorite, garnet, titanoclinohumite, oxide minerals, and apatite, as well as abundant crustal and mantle xenoliths (Allen and Balk, 1954; Schmitt et al., 1974; Roden and Smith, 1979). They were initially identified as kimberlites (Allen and Balk, 1954). However, these tuffs were not directly derived from magma, their mantle-derived inclusions are xenocrysts rather than phenocrysts, and they lack incompatible-element-rich minerals that typify kimberlites (Smith and Levy, 1976; Roden, 1981). They are more accurately described as serpentinized ultramafic microbreccias or SUMs (McGetchin and Silver, 1972; Roden, 1981) and are thought to be a lower-temperature, volatile-rich mixture formed where Navajo minette magma interacted with hydrous mantle rocks (Smith and Levy, 1976; Roden, 1981).

In some localities such as the Cerros de las Mujeres (Vaniman et al., 1985), minor sodic lamprophyres (monchiquites, with Na2O > K2O) erupted concurrently with minettes. Even rarer and more exotic lamprophyre species have been identified within the Navajo volcanic field, including olivine melilitite and katungite, which has an SiO2 content of only 33.6 weight percent (Laughlin et al., 1986; Laughlin et al., 1989).

Abundant published data on the petrology and geochemistry of the rocks of the Navajo volcanic field are available (Williams, 1936; Nicholls, 1969; McGetchin and Silver, 1970; Smith and Levy, 1976; Roden, 1977; Ehrenberg, 1978; Hunter, 1979; Roden and Smith, 1979; Roden, 1981; Jones and Smith, 1983; Vaniman et al., 1985; Alibert et al., 1986; Laughlin et al., 1986; Roden et al., 1990; Nowell, 1993; Nowell and Rogers, 1993).

XENOLITHS

Navajo volcanoes have erupted a considerable variety of upper-crustal, lower-crustal, and upper-mantle xenoliths, and many of these types have undergone considerable petrologic, trace-element, isotopic, and geochronologic study (McGetchin and Silver, 1972; Ehrenberg, 1978, 1982; Ehrenberg and Griffin, 1979; Padovani et al., 1982; O’Brien, 1983; Broadhurst, 1986; Wilshire et al., 1988; Roden et al., 1990; Smith et al., 1991; Wendlandt, 1992; Wendlandt et al., 1993, 1996; Alibert, 1994; Smith, 1995; Mattie, 1996; Riter and Smith, 1996; Mattie et al., 1997; Selverstone et al., 1999; Wang et al., 1999; Smith, 2000; Roden and Shimizu, 1993, 2000; Lee et al., 2001; Crowley et al., 2002; Smith et al., 2002). The SUM diatremes, particularly those in the Monument upwarp, tend to be richer in xenolith diversity than the minette diatremes (Selverstone et al., 1999).

Mantle xenoliths from the Navajo volcanic field include spinel peridotites and rarer garnet peridotites (Ehrenberg, 1982; Smith et al., 1991). Trace-element and isotopic studies of these xenoliths (Riter and Smith, 1996; Smith, 2000, Roden and Shimizu, 2000; Lee et al., 2001) indicate that the Colorado Plateau is underlain by a stable, cool, depleted mantle root analogous to those beneath Archean cratons.

The lower-crustal xenoliths, such as garnet granulite, amphibolite, gabbro, pyroxene granulite, eclogite, and felsic gneiss, have been used to map the origin and evolution of the regional lithosphere and crust. Sm-Nd isotopic and trace-element studies of these xenoliths by Wendlandt et al. (1993) and Mattie et al. (1997) suggest that nearly all of the present Colorado Plateau crust and mantle lithosphere were formed between 2.0 and 1.75 Gy ago, and that little or no underplating or other addition from the mantle has occurred since. However, Crowley et al. (2002) obtained U-Pb...
136 SEMKEN

ages ca. 1.4 Ga for lower-crustal xenoliths from The Thumb and Red Mesa diatreme, which may indicate mafic underplating, or resetting of older ages by Paleoproterozoic tectonism.

Selverstone et al. (1999) used petrologic variations in Navajo crustal xenoliths to map a northwest-dipping convergent boundary between the Early Proterozoic Yavapai and Mazatzal crustal provinces, which is thought to strike northeast-southwest and pass just to the south of the Four Corners.

Many of the diatremes also contain large (tens of meters in size), mostly intact blocks of Phanerozoic sedimentary rocks that slumped in from the walls during eruption.

GEOCHRONOLOGY OF THE IGNEOUS ROCKS

Dating of the Navajo rocks has been complicated by the prevalence of wallrock-contaminated tuffs and breccias, and by alteration of many dikes. The first ages were obtained by Naeser (1971) by fission-track dating of apatites in minettes and inclusions. These ages range from 22.8 to 45.0 Ma, with most between 28 and 35 Ma.

Roden et al. (1979) obtained a K-Ar age of 25 Ma for the Buell Park diatreme, based on analyses of phlogopites from several minette dikes and from inclusions. Laughlin et al. (1986) subsequently published K-Ar ages from twelve phlogopites in dikes that range from 19.4 to 27.7 Ma. These were obtained using revised age constants, and Laughlin et al. (1986) have argued that the most reliable time span for Navajo volcanism is 28 to 19 Ma, late Oligocene to early Miocene. Recent 40Ar/39Ar geochronologic studies on Navajo minettes and trachybasalts have yielded good ages in this same range. G. Nowell (personal commun., 2002) reported ages ranging from 21.1 to 27.5 Ma for seven Chuska Mountain and Comb Ridge centers, and Cather et al. (this guidebook) obtained a mean age of 25.05 Ma for trachybasalts at Narbona Pass.

STORIES AND ETHNOGEOLOGY OF THE NAVAJO VOLCANIC FIELD

The Diné (Navajo people) invoke a direct connection between their cultural identity and the physical attributes of Diné bikéyah, their homeland on the Colorado Plateau. All landforms here have stories and histories associated with them, and the distinctive tsézhin ‘ii ‘áhi of the Navajo volcanic field are certainly no exception. The roles of Tsé bit’a’i and other igneous features in the creation stories of the Diné can be found in the compilations by Matthews (1897) and Zolbrod (1984) and the children’s book by Browne and Whitethorne (1993). It is important to note that such stories should be retold only with great respect and only during the winter months.

The indigenous Diné knowledge system also includes empirical knowledge of nature accrued through millennia of living in direct contact with their environment. That knowledge pertaining directly to the Earth is Diné ethnogeology, or tsé na’alkaah (“rock study”).

A central principle of Diné ethnogeology holds that Earth materials and features result from continuous interactions of processes that operate in paired environmental systems referred to as Nohosdzáán (Earth) and Yaddihil (Sky). Dynamic processes operating in the Earth can be equated to endogenic or solid-Earth processes such as magmatism and orogeny, and those operating in the Sky can be equated to exogenic or fluid-Earth processes.

such as the water cycle and weathering (Semken and Morgan, 1997). This model of endogenic-exogenic interaction is similar to that of process geomorphology (e.g., Summerfield, 1994), although traditional Diné see these processes as manifestations of living systems. A second duality is that between destructive or “male-like” processes, and constructive or “female-like” processes (Semken and Morgan, 1997).

These models can be combined to describe the origin and evolution of the Navajo volcanic landforms in a way that is logical and familiar to traditional Diné people (Semken, 1998): violent (male-like) interaction between magma (Earth) and meteoric water (Sky) formed the diatremes, and subsequent interaction between Colorado Plateau uplift (Earth-driven; female-like) and weathering and erosion (Sky-driven; male-like) exposed and sculpted the diatremes and dikes into their present shapes. Diné ethnogeology and other place-based, culturally-integrated scientific concepts are now being used to enhance science education in Navajo Nation colleges and schools (Semken, 2000).

IMPORTANT NOTICE

Many of the most spectacular features of the Navajo volcanic field can be observed from the major highways crossing the Four Corners region, but those located on lands of the Navajo Nation must not be accessed nor sampled without a permit obtained in advance from the Navajo Nation Minerals Department in Window Rock, Arizona.

ACKNOWLEDGMENTS

The author deeply appreciates several veteran researchers in the Navajo field who have generously shared their knowledge and a few hard-to-find manuscripts with him: notably Doug Smith, Bill Laughlin, Kent Condie, and Mike Roden. He thanks Geoff Nowell for sharing his yet-unpublished NVF Ar-Ar ages. He also says Ahééhée’ for the ongoing cultural education provided by his Navajo students and family. Doug Smith, Larry Crumpler, and Spencer Lucas provided thorough reviews of this paper.

REFERENCES

Matthews, W., 1897 (reprinted 1994), Navaho legends: Salt Lake City, University of Utah Press, 303 p.

Mattie, P.D., 1996, Geochemical study of xenoliths from the Navajo volcanic
field, Arizona, New Mexico, and Utah [M.S. thesis]: Socorro, New Mexico Institute of Mining and Technology, 100 p.

