Early Permian vertebrate assemblage and its biostratigraphic significance, Arroyo del Agua, Rio Arriba County, New Mexico

Spencer G. Lucas, Susan K. Harris, Justin A. Spielmann, David S. Berman, Amy C. Henrici, Andrew B. Heckert, Kate E. Zeigler, and Larry F. Rinehart, 2005, pp. 288-296

This is one of many related papers that were included in the 2005 NMGS Fall Field Conference Guidebook.

Annual NMGS Fall Field Conference Guidebooks

Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico.

Free Downloads

NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks.

Copyright Information

Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. No material from the NMGS website, or printed and electronic publications, may be reprinted or redistributed without NMGS permission. Contact us for permission to reprint portions of any of our publications.

One printed copy of any materials from the NMGS website or our print and electronic publications may be made for individual use without our permission. Teachers and students may make unlimited copies for educational use. Any other use of these materials requires explicit permission.
This page is intentionally left blank to maintain order of facing pages.
INTRODUCTION

Early Permian vertebrate fossils from the vicinity of Arroyo del Agua in the Chama Basin of northern New Mexico (Fig. 1) are among the longest known and most extensively documented Early Permian vertebrates from North America. These vertebrate fossils are of biostratigraphic value, and their correlation provides a relatively precise age for part of the Cutler Group in northern New Mexico. Here, we review the history of study, localities, and composition of the Arroyo del Agua Early Permian vertebrate fauna and place the localities into lithostratigraphic context. This allows us to discuss the biostratigraphic correlation of the Arroyo del Agua Early Permian vertebrates.

PREVIOUS STUDIES

The Lower Permian vertebrate-fossil-bearing strata surrounding the village of Arroyo del Agua, in Rio Arriba County, north-central New Mexico, have been actively prospected and excavated for more than 125 years. The nine well-collected quarries in the region (Fig. 2) have yielded extensive Lower Permian vertebrate material, which is rivaled only by the vertebrate fossil record of the Lower Permian redbeds of Texas (Berman, 1993). The Arroyo del Agua localities have been collected in three phases. The initial discovery and collection was made by David Baldwin from 1877 to 1881, followed by various university field parties intermittently collecting from 1911 to the early 1960s. From 1979 to the present, the Arroyo del Agua localities have been predominantly collected by the Carnegie Museum of Natural History and more recently by the New Mexico Museum of Natural History and Science in association with the Carnegie Museum of Natural History.

In 1877-1881, David Baldwin collected in the Arroyo del Agua region for five field seasons, initially working for O.C. Marsh and later for E. D. Cope. Subsequent researchers concluded that what is currently known as the Baldwin bonebed (Fig. 2) is where he collected the first Permian vertebrates discovered in New Mexico. This collection was sent to O.C. Marsh in 1877 (Langston, 1953). Whereas this initial collection is seen as a key record of a Lower Permian vertebrate fauna, it produced little to no response from either Marsh or Cope, who generated only one paper each based on Baldwin’s collections (Marsh, 1878; Cope, 1881).

The second phase of collecting in the region began with a field party from the University of Chicago headed by S. W. Williston in 1911. This party recollected Baldwin’s locality, currently called the Baldwin bonebed. They also followed the fossiliferous horizon of that bonebed to the southeast along Mesa Montosa (called “Mesa Poleo” by them), and one of the party, P. C. Miller, discovered a new quarry, later named the Miller bonebed (Fig. 2). The resulting fauna and the stratigraphy of the quarries from which the fauna were collected resulted in several publications that characterized the Lower Permian vertebrate fauna of northern New Mexico (Case, 1907, 1910, 1911, 1915, 1916; Huene, 1911; Williston, 1911a, b, 1914a, b, 1915, 1917, 1918; Williston and Case, 1912, 1913a, b, c, d; Case and Williston, 1913a, b, c; Mehl, 1913; Douthitt, 1917).
Field parties from the University of California at Berkeley began collecting in the Arroyo del Agua region in 1928. These crews were led by C. L. Camp and V. L. VanderHoof, who each discovered the quarries that bear their names (Fig. 2). Excavation of these sites was continued in 1934 and 1935, and during these field seasons the Welles, Anderson and Quarry Butte quarries (Fig. 2) were discovered. All of the Berkeley quarries are tightly clustered near the small butte that they named Loma Salazar (Fig. 2). Four important additions to the Arroyo del Agua fossil vertebrate assemblage were based on specimens from the original Camp quarry collections. These included the basal or pelycosaur-grade synapsids, hereafter simply referred to as pelycosaurs, the eothyridid Oedaleops campi and varanopseid Aerosaurus wellesi, the diadectomorph Limnosceloides brachycoles and the captorhinid Rhiodenticulatus heatoni (Langston, 1965, 1966; Langston and Reisz, 1981; Berman and Reisz, 1986; Wideman, 2002). In addition, the University of California collection from the Anderson quarry allowed the detailed redescription of the skull of Sphenacodon ferocior (Eberth, 1985).

The most recent phase of collecting in the Arroyo del Agua region was begun by joint field crews from the Carnegie Museum Natural History and the University of Toronto. In 1979-1980, both the Cardillo quarry near Loma Salazar and the Morfin bonebed on the southwest flank of Mesa Montosa (Fig. 2) were discovered and partially excavated. This prompted Berman et al. (1985) to describe the Morfin bonebed and specifically record the occurrence of the rare dissorophid temnospondyl Ecolsonia cutlerensis, known otherwise from the VanderHoof quarry. Collecting continued until the mid-1980s, resulting in several additions to the vertebrate fossil assemblage of the Arroyo del Agua area, including the diadectomorph Tseajaia cf. T. campi, the araeoscelid Zarcasaurus tanyderus, the seymouriamorph Seymouria sanjuanensis and the microsaur Stegotretus agyrus (Berman and Reisz, 1980; Eberth and Berman, 1983; Brinkman et al., 1984; Berman et al., 1988).

From 2002 to 2004, the Cardillo quarry was reopened and excavated by a joint field crew from the New Mexico Museum of Natural History and Science and the Carnegie Museum of Natu-
ral History. Stratigraphic studies were also undertaken to put the Arroyo del Agua fossil vertebrate localities into a more detailed lithostratigraphic framework.

LITHOSTRATIGRAPHY

The canyon of the Rio Puerco and its tributaries around Arroyo del Agua expose a section of the Pennsylvanian- Permian Cutler Group about 220 m thick. These strata form areas of low badlands, dissected arroyo valleys and denuded escarpment slopes throughout the Arroyo del Agua area.

Lucas and Krainer (2005) divided the Cutler Group in the Chama Basin into two mappable lithostratigraphic units, a lower El Cobre Canyon Formation and an upper Arroyo del Agua Formation (Fig. 3). Approximately 90 m of the upper part of the El Cobre Canyon Formation are the oldest bedrock strata exposed in the Arroyo del Agua area. They consist of brown arkosic sandstone in multistoried beds with relatively thin brown siltstone interbeds. Extraformational conglomerates characterize the El Cobre Canyon Formation, and they are composed of clasts of Proterozoic granite, quartzite and other metamorphic rock fragments.

The overlying Arroyo del Agua Formation is about 130 m thick in the Arroyo del Agua area. It consists of thick slopes of orange-red siltstone that contain numerous horizons of pedogenic calcrite nodules. Interbedded arkosic sandstones form relatively thin sheets, and few, mostly intraformational, conglomerates are present in the Arroyo del Agua Formation. The Upper Triassic Chinle Group disconformably overlies the Arroyo del Agua Formation except where local outcrops of the De Chelly Sandstone (= Meseta Blanca Member of Yeso Formation) are present.

All but one of the Early Permian vertebrate fossil localities in the Arroyo del Agua area are in the upper part of the El Cobre Canyon Formation (Fig. 3). They are derived from an interval approximately 50-60 m thick that has its top about 20 m below the contact between the El Cobre Canyon and Arroyo del Agua formations. The overall similarity of the vertebrate fossils from the various localities (see below) and the relatively narrow stratigraphic interval lead us to treat these fossils as a single biostratigraphic assemblage, as have previous workers (e.g., Langston, 1953; Romer, 1960).

ARROYO DEL AGUA VERTEBRATE FOSSIL QUARRIES

The nine Early Permian vertebrate-fossil quarries in the Arroyo del Agua area from which extensive vertebrate collections have been made are the Baldwin bonebed, Miller bonebed, Vander-Hoof quarry, Welles quarry, Quarry Butte locality, Anderson quarry, Camp quarry, Cardillo quarry and Morfin bonebed (Fig. 2). Langston (1953) described the geological setting and fauna of most of the Arroyo del Agua quarries. Berman (1993) reviewed the studies conducted since Langston’s (1953) work and noted several important additions, as well as taxonomic changes to the vertebrate assemblage list from the Arroyo del Agua localities (Table 1). The summary presented below is based on these two previous studies and new data collected by us.
TABLE 1. Fossil vertebrate taxa from the El Cobre Canyon Formation in the Arroyo del Agua area.

<table>
<thead>
<tr>
<th>Location</th>
<th>Taxa</th>
</tr>
</thead>
</table>
| **Anderson quarry** | Temnospondyli: Eryops grandis
 | Microsauria: a pantylid?
 | Diadectomorpha: Diadectes sp.
 | Parareptilia: Bolosaurus sp.
 | Eupelycosauria: Ophiacodon sp.
 | |
| **Baldwin bonebed** | Temnospondyli: Chenoprosopus milleri
 | Eryops grandis
 | Zatrachys serratus
 | Platyhystrix rugosus
 | Diadectomorpha: Diadectes lentus
 | Captorhinomorpha: Rhiodenticulatus heatoni
 | Eupelycosauria: Ophiacodon mirus
 | Sphenacodon ferox |
| **Camp quarry** | Temnospondyli: Eryops grandis
 | Zatrachys serratus
 | Broiliellus novomexicanus
 | Diadectomorpha: Diadectes sp.
 | Limnosceloids brachycoles
 | Captorhinomorpha: Rhiodenticulatus heatoni
 | Caseasauria: Oedaleops campi
 | Eupelycosauria: Aerosaurus Wellesi
 | Ophiacodon mirus
 | Edaphosaurus novomexicanus
 | Sphenacodon ferox |
| **Valley floor east of Camp quarry** | Temnospondyli: Ecolsonia cutlerensis
 | Microsauria: Stegotretus agyrus
 | Diadectomorpha: Tsejaia cf. T. campi
 | Araeoscelida: Zarcasaurus tanyderus |
| **Cardillo quarry** | Temnospondyli: Eryops sp.
 | Anthracosauria: an embolomer |
| **Morfin bonebed** | Temnospondyli: Ecolsonia cutlerensis |

Quarry butte

Elasmobranchii: Xenacanthus sp.
Palaeniscoidea: Progyrolepis sp.
Temnospondyli: Chenoprosopus milleri
Eryops grandis
Zatrachys serratus
Platyhystrix rugosus
Diadectomorpha: Diadectes lentus
Eupelycosauria: Ophiacodon mirus
Sphenacodon ferox

VanderHoof quarry

Elasmobranchii: Xenacanthus sp.
Palaeniscoidea: Progyrolepis sp.
Temnospondyli: Chenoprosopus milleri
Eryops grandis
Zatrachys serratus
Platyhystrix rugosus
Ecolsonia cutlerensis
Diadectomorpha: Diadectes lentus
Eupelycosauria: Ophiacodon mirus
Sphenacodon ferox

Welles quarry

Elasmobranchii: Xenacanthus sp.
Palaeniscoidea: Progyrolepis sp.
Temnospondyli: Chenoprosopus milleri
Eryops grandis
Zatrachys serratus
Platyhystrix rugosus
Lepospondyli: an ophiderpetontid?
Diadectomorpha: Diadectes lentus
Eupelycosauria: Ophiacodon mirus
Sphenacodon ferox

Baldwin Bonebed

The Baldwin bonebed is in a claystone that overlies a thin-bedded sandstone, which is underlain by a light-colored sandstone interbedded with red shale. The claystone containing the quarry laterally grades into red-brown shale. In addition to vertebrate material, the bonebed contains charcoal and spiral coprolites. The vertebrate assemblage consists of the temnospondyl amphibians *Chenoprosopus milleri* Mehl, *Eryops grandis* Marsh, *Zatrachys serratus* Cope, and *Platyhystrix rugosus* Case; the diadectomorph
amphibian Diadectes lentus Marsh; the captorhinomorph reptile Rhiodenticulatus heatoni Berman and Reisz (=Puercosaurus obtusidens Williston); and the pelycosaur reptiles Sphenacodon ferox Marsh and Ophiacodon mirus Marsh (type locality of both). This assemblage is most similar to that of the Quarry Butte locality.

Miller Bonebed

The Miller bonebed is similar in lithology (though slightly more sandy) and vertebrate composition to the Baldwin bonebed. The two quarries also are at approximately the same stratigraphic level, both being underlain by the same laterally continuous sandstone. The vertebrate assemblage from the Miller bonebed is identical to that of the Baldwin bonebed, although the Miller deposit contains fewer, but better preserved, specimens. Also, the type locality of Chenoprosopus milleri is within a few meters of the quarry, though it was collected from the sandstone slightly below that of the main quarry horizon.

VanderHoof Quarry

The VanderHoof quarry is in green and brown micaceous clay and siltstone that progressively becomes lighter colored towards its top. These clays and siltstones are capped by a medium-grained crossbedded sandstone and underlain by a layer of marl and siltstone that progressively becomes lighter colored towards the top. The vertebrate assemblage from the VanderHoof quarry consists of the elasmobranch fish Xenacanthus sp.; the pelyosaur reptile Platyhystrix rugosus Case; the diadectomorph amphibian Diadectes lentus Marsh; and the pelycosaurs Sphenacodon ferox Marsh and Ophiacodon mirus Marsh. The VanderHoof quarry is distinguished from the similar Quarry Butte quarry by the presence of a small but diverse fauna, listed by Langston (1953) as Pecopterus arborescens, P. bredovi, Odontoptyeris genuina, Taeniopyteris sp., Dauubrea sp., Calamites, Lobatannularia sp., Dicranophyllum?, Cordaites?, and Cardiocarpus?

Welles Quarry

As noted above, the Welles quarry is similar lithologically to the VanderHoof quarry, and both quarries preserve a similar assemblage. Unique to the Welles quarry is a probable aistopod collected by Vaughn (1963) and later named Vaughniella urodelloides by Kuhn (1964). Most notably, the Welles quarry produced numerous specimens of the temnospondyl Zatrachys serratus (Fig. 5C) and Chenoprosopus milleri (Fig. 4C) (Langston, 1953), as well as a rich assemblage of nonmarine bivalves assigned to Palaeanodonta (Rinehart et al., 2003). The Welles quarry is lithologically distinct from the VanderHoof quarry due to its lack of a capping sandstone and a thicker underlying concretionary layer. The main quarry level typically contains isolated cranial elements and axial skeletal elements; associated or articulated elements are rare. The marl layer underlying the principal quarry level is also fossiliferous, containing isolated and heavily concreted postcranial elements.

Quarry Butte Locality

The Quarry Butte locality occurs geographically between the VanderHoof and Welles quarries. Lithologically, the Quarry Butte locality consists of shale similar to those of the two nearby quarries, which are capped by crossbedded sandstones and underlain by marls. The only lithologically distinct characteristic of the site is a series of hard, lenticular, calcareous lenses in the shale. Skull elements are rare at this locality, but the vertebrate remains in the marl are well preserved. All tetrapod species from the neighboring quarries are found in the Quarry Butte locality (e.g., Fig. 5B), with exceptions being Zatrachys, Ecolsonia cutlerensis and the aistopod. The Welles quarry, VanderHoof quarry and Quarry Butte locality were interpreted by Langston (1953) as belonging to a single large lake deposit, due to their similar lithologies and vertebrate assemblages. However, Berman et al. (1988) interpreted the quarries as ephemeral crevasse channels that were temporary sites of standing water within a locally anastomosed river system.

Anderson Quarry

The Anderson quarry consists of light gray shale with lenses of crossbedded sandstone capped by numerous, light-colored marl layers. These shales contain numerous small elements and partial, articulated skeletons of larger animals. The marls overlying the shales contain heavily encrusted pelycosaur elements. The vertebrate assemblage of the Anderson quarry includes the temnospondyl Eryops grandis Marsh (Fig. 4G), the microsaur Pantylus sp., the diadectomorph Diadectes lentus Marsh (Fig. 4D), the para-reptile Bolosaurus sp. and the pelycosaurs Ophiacodon sp. and Sphenacodon ferox Romer (Fig. 5D-E). Sphenacodon remains dominate the quarry; with no less than 35 partial skeletons of individuals having been collected. Langston (1953) interpreted this deposit as belonging to a nearshore lake deposit, but Eberth (1985) interpreted it as a crevasse-channel deposit similar to the VanderHoof, Quarry Butte and Welles quarries.

Camp Quarry

The Camp quarry is in a soft red siltstone composed of subangular quartz and hematitic clay, with occasional mica flakes and smaller dark minerals. Vertebrate remains from this quarry are well preserved and include articulated skeletons, but some specimens have been plastically deformed. The vertebrate assemblage consists of the temnospondyl amphibians Eryops grandis Marsh, Zatrachys serratus Cope and Broiliellus novomexicanus Williston (Fig. 4B); the holotype of the diadectomorph Limnosceloides brachycoleus Langston; the holotype of the captorhinid Rhiodenticulatus heatoni and the pelycosaurs Sphenacodon ferox Marsh, Ophiacodon mirus Marsh, Aerosaurus wellesi, Langston and Reisz (holotype) (Fig. 4A), Edaphosaurus novomexicanus Williston and Case and Oedaleops campi, Langston (holotype)
FIGURE 4. Selected fossil vertebrates from the various Arroyo del Agua quarries. A. Skull of the pelycosaur *Aerosaurus wellesi* (UCMP 40087) in ventral view, collected from the Camp quarry. B. Skull of the temnospondyl *Broiliellus novomexicanus* (UCMP 40103) in dorsal view, collected from the Camp quarry. C. Partial skull of the temnospondyl *Chenoprosopus milleri* (UCMP 34174) in ventral view, collected from the Welles quarry. D. Nearly complete dentary of the diadectomorph *Diadectes latus* (UCMP 125584) in occlusal view, collected from the Anderson quarry. E, I. Partial skull of the temnospondyl *Eryops* sp. (CMNH 34906) in dorsal (E) and lateral (I) views, collected 1.6 km northwest of Arroyo de Agua, west side of Rio Puerco, CM locality 1070. F. Nearly complete skull of the pelycosaur *Oedaleops campi* (UCMP 35758) in dorsal view, collected from the Camp quarry. G. Complete left scapula of the temnospondyl *Eryops grandis* (UCMP 39181) in lateral view, collected from the Anderson quarry. H. Complete right maxilla of the pelycosaur *Oedaleops campi* (UCMP 35758) in lateral view, collected from the Camp quarry. All scale bars equal 5 cm.
Langston (1953) interpreted this deposit as a flood-plain deposit, thus differing considerably from the other quarries. Berman et al. (1988) and Eberth and Miall (1991) interpret the strata at and around the Camp quarry as a complexly intercalated succession of crevasse splay and overbank suspension deposits that were deposited in relatively distal portions of the floodplain of an anastomosed river system.

Cardillo Quarry

The Cardillo quarry is in a reduced mudstone that is overlain by a fine-grained sandstone. The material collected from the quarry ranges from isolated elements to articulated skeletons. The vertebrate assemblage of the quarry consists of the temnospondyl *Eryops* sp., an embolomere, the diadectomorph reptile *Diadectes* sp., an indeterminate captorhinind reptile and the pelycosaurian reptiles *Ophiacodon* sp., *Sphenacodon ferocior* Marsh and a varanopseid. Berman (1993) interpreted the site as being a crevasse-splay or channel deposit, and we also identify it as a crevasse-splay deposit.

Morfin Bonebed

The Morfin bonebed lies geographically near the Baldwin and Miller bonebeds (Fig. 2). These sites are at approximately the same stratigraphic level as the VanderHooft quarry, Welles quarry,
Quarry Butte and Camp quarry. Lithologically, the bonebed exhibits a sequence of sandstone lenses and sheets with interbedded siltstones and mudstones. This is indicative of repeated cycles of shallow, ephemeral flow and deposition from suspension characteristic of a crevasse-splay deposit. Most elements recovered from this quarry are isolated, especially those from the underlying limestone-pebble conglomerate. However, articulated and associated elements, including skulls and large portions of the postcrania of the rare temnospondyl amphibian *Ecolsonia cutlerensis* Vaughn, are found in the sandy shale and siltstone (Berman et al., 1985).

Other Localities

Numerous articulated specimens have been collected from the valley floor immediately east of the Camp quarry. These include the dissorophid *Ecolsonia cutlerensis* Vaughn, the holotype of the microsaur *Stegotretus agyrus* Berman et al., the diadectomorph *Tseajaia* cf. *T. campi* Vaughn and the holotype of the araeoscelid *Zarcasaurus tanyderus* Brinkman et al. An incomplete skull of *Eryops* sp. (Fig. 4E, I) was collected 1 km northwest of Arroyo del Agua, and vertebrae of *Sphenacodon* (Fig. 5A) are from an unspecified site in the Arroyo del Agua area.

Another locality about 13 km northeast of Arroyo del Agua yielded six partial to complete specimens of *Seymouria sanjuanensis* Vaughn from sediments deposited in an overbank floodplain environment (Eberth and Berman, 1983; Berman et al., 1987). This locality, on the northern flank of the Rio Puerco north of Youngsville, is stratigraphically high in the Arroyo del Agua Formation, not in the underlying El Cobre Canyon Formation. Therefore, it is younger than all of the Arroyo del Agua quarries.

CORRELATION

Lucas (2002) proposed an informal tetrapod biochronology of the Permian, and the Lower Permian assemblage of the Arroyo del Agua region can be placed in this biochronological framework (Fig. 6). Thus, Lucas (2002) defined three vertebrate faunachrons based on the tetrapod assemblages of the Bowie and Wichita Groups of Texas: faunachron A equates to the lower Wolfcampian Markley and Archer City Formations; faunachron B equates to the upper Wolfcampian Nocona Formation and the lower Leonardian Petrolia Formation; and faunachron C equates to the middle Leonardian Waggoner Ranch/Lueders Formations.

When comparing these Texas vertebrate faunas to the vertebrate fauna of the Arroyo del Agua region, key genera appear in both, allowing for biostratigraphic correlation. The presence of numerous temnospondyls (especially *Eryops* and *Zatrachys*), few microsaurs and aistopods, anthracosaurs, the diadectomorph *Diadectes* and diverse pelycosaurs suggests a correlation to faunachron A of Lucas (2002). Furthermore, *Chenoprosopus lewisi* from the Markley Formation described by Hook (1993) is of faunachron A age, and Reisz et al. (2005) believe it is a junior synonym of *C. milleri* known from the Arroyo del Agua quarries. These occurrences, and the absence of *Seymouria*, indicate the fossil localities in the El Cobre Canyon Formation near Arroyo del Agua are of faunachron A age, which means they are correlative to the Bowie Group of Texas and are of early Wolfcampian age (Fig. 6).

A key tetrapod to Early Permian tetrapod biochronology is the seymouriamorph *Seymouria*, due to it being limited solely to faunachron B. Its presence at one locality north of Youngsville, in strata higher than the Arroyo del Agua bonebeds, indicates that the Arroyo del Agua Formation should be correlated to faunachron B of Lucas (2002).

ACKNOWLEDGMENTS

Several landowners in the Arroyo del Agua area have generously granted access to their land. The NM State Land Office and U. S. Forest Service also permitted work on lands they administer. We are especially grateful to the numerous colleagues and volunteers who have participated in fieldwork at Arroyo del Agua over the years. Adrian P. Hunt and Robert M. Sullivan provided helpful reviews.

REFERENCES

Case, E.C., and Williston, S.W., 1913b, Description of a nearly complete skeleton of *Diasaurus zenos* Case: Carnegie Institution of Washington, Publication no. 181, p. 17-35.

Huene, F. von, 1911, Kurze Mitteilung über Perm, Trias und Jura in New Mexico: Neues Jahrbuch für Mineralogie, Geologie und Paläontologie, v. 32, p. 730-739.

Langston, W., Jr., 1953, Permian amphibians from New Mexico: University of California, Publications in Geological Sciences, v. 29, p. 349-416.

Mehl, M.G., 1913, Description of *Chenoprosopus milleri* gen. et sp. nov.: Carnegie Institution of Washington, Publication no. 181, p. 11-16.

Williston, S.W., 1911b, American Permian vertebrates: Chicago, University of Chicago Press, 145 p.

