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INTRODUCTION

The Middle Jurassic Todilto Formation is found in northern 
New Mexico and southwestern Colorado where it forms well-
exposed outcrops of gypsum and limestone.  Economically, the 
Todilto Formation has one of the largest and most productive 
limestone-hosted uranium deposits in the world (Chenoweth, 
1985a, 1985b; McLemore and Chenoweth, 1992).  Since lime-
stones are normally unlikely hosts for uranium deposits, numer-
ous studies on the Todilto Formation have investigated its deposi-
tion and diagenesis as well as the possible uranium sources and 
the unusual conditions that must have existed to form these ore 
deposits (Armstrong, 1995; Bell, 1963; Berglof and McLemore, 
1996; Berglof and McLemore, 2003; Ellsworth and Mirsky, 
1952; Green, 1982, Gabelman and Boyer, 1988; Gruner et al., 
1951; Hines, 1976; Huffman and Lupe, 1977; McLemore and 
Chenoweth, 2003; Rawson, 1980a; Rawson, 1980b).

In the Ambrosia Lake uranium district of northwestern New 
Mexico (Fig. 1), previous work on the Todilto Formation has 
described small- to large-scale, fold-like structures in the unit 
(Green, 1982).  These features have been identified as intrafor-
mational folds that formed as a result of differential sediment 
loading or structural deformation (Armstrong, 1995; Berglof 
and McLemore, 2003; Ellsworth and Mirsky, 1952; Finch and 
McLemore, 1989; Gabelman and Boyer, 1988; Green, 1982; 
Hines, 1976; Huffman and Lupe, 1977; McLemore and Che-
noweth, 2003).  

Biologic origins for these structures have also been suggested 
(Perry, 1963; Rawson, 1980b), but that has been disputed by 
Lucas et al. (2003).  Armstrong (1995) suggested that the Todilto 
folds had many characteristics in common with tepee structures, 
but indicated that a definitive case could not be made for any 
model to date.

This paper will present some preliminary findings that once 
again point to a non-structural, biological original for some of the 
fold-like features previously described by Green (1982).  The fea-
tures consist of large, sub-aqueous stromatolites probably form-
ing in the restricted waters of the Todilto salina.

STRATIGRAPHY

Dutton (1885) first described the rocks that later Gregory 
(1916; 1917) would designate with the name Todilto Limestone.  
In the past, the Todilto Limestone has been assigned as a member 
of the Morrison, Entrada, or Wanakah Formations, but a revision 
of the stratigraphic nomenclature by Lucas et al. (1985) elevated 
it to the Todilto Formation.

The sediments of the Todilto Formation cover an area of 
approximately 100,000 km2 and form a large, elliptical enclosed 
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FIGURE 1.  The study area within the Ambrosia Lake uranium district, 
New Mexico.
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basin (Fig. 2).  It is conformably underlain by the eolian, Middle 
Jurassic Entrada Sandstone and overlain by the lacustrine and 
sabkha deposits (Kirkland et al., 1995) of the Middle-Upper 
Jurassic Summerville Formation (Fig. 3).  The Todilto Formation 
ranges in thickness from 10 to almost 40 m and consists of two 
members: the lower limestone Luciano Mesa Member and the 
upper gypsum Tonque Arroyo Member (Fig. 3).  

The age of the Todilto Formation, based on fossil evidence 
compiled by Lucas et al. (1985), is Middle Callovian (~159 Ma).  
Berglof (1992) considers the uranium ores to be syndepositional.  
Isotopic ages for uraninite within the Todilto Formation provide 
an age of 150 to 155 Ma.  Paleogeographic and paleoclimatic 
reconstructions (Fig. 4, Scotese et al., 2005) for this time period 
place the Todilto Formation at approximately 20°N latitude in an 
arid climatic belt.  

Over the years, a significant debate has existed over the Todil-
to’s depositional environment.  Some authors suggested that the 
carbonates and evaporates are marine (Baker et al., 1947; Evans 
and Kirkland, 1988; Harshbarger et al., 1957; Imlay, 1952; Ridg-
ley and Goldhaber, 1983), others proposed a non-marine, lacus-
trine origin (Anderson and Kirkland, 1960; Rapaport et al., 1952; 
Tanner, 1970), and yet others proposed a coastal salina that may 
have been periodically flooded by marine waters (Anderson and 
Lucas, 1993; Armstrong, 1995; Lucas et al., 1985; McCrary, 1985).  
Kirkland et al. (1995), based on paleontology, sedimentology and 
the isotopic data (carbon, strontium and sulfur), concluded that 
the Lucas et al. (1985) model of a coastal salina with a complex 
interplay of both marine and freshwaters best explains the Todilto 
deposits.  More recently, Benan and Kocurek (2000), based on 
the Todilto Formation filling the remnant topography preserved 
on the Entrada Sandstone in the Ghost Ranch area (northeast of 
the study area), have called for a “catastrophic flooding” event 
that buried the Entrada dune forms with minimal reworking and 
in deep enough water that wave-generated features are minimal 
to non-existent.  Overall, because of the Todilto’s high organic 
content and the lack of bioturbation and/or ripples or other wave-
formed features, the Todilto waters had to be relatively deep, 
poorly-oxygenated and possibly chemically stratified.

THE LUCIANO MESA MEMBER

The Luciano Mesa Member of the Todilto Formation is a thin 
(<10 m), micro-laminated, kerogen-rich limestone.  Anderson and 
Kirkland (1960) considered the laminae (alternating layers of cal-
cite, clastics and organics) to be varves and, based on the number 
of varves, estimated that deposition occurred over a period of 

FIGURE 2.  Map of the aerial extent of Todilto Formation (Lucas and 
Anderson, 1997).

FIGURE 3.  The stratigraphy of the Todilto Formation (modified from 
Lucas and Heckert, 2003).
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14,000 years.  This carbonate member is informally subdivided 
into a “platy,” basal, organic-rich, thinly-laminated mudstone (2-
5 m thick), followed by a wavy, crenulated, “crinkly” zone (1-3 m 
thick) with scattered domal structures, and capped by a recrystal-
lized, massive carbonate (0-5 m thick) that appears to be brecci-
ated in places and also contains large domal structures.

Within the middle “crinkly” and upper massive units, large, 
domal features (Fig. 5) have been attributed to intraformational 
deformation or folds (Rapaport, 1952; Rapaport et al., 1952), 
algal reefs or bioherms (Perry, 1963) or stromatolites (Rawson, 
1980b).

ORIGIN OF THE “INTRAFORMATIONAL FOLDS”

Rapaport (1952) first described the features as intraforma-
tional folds and attributed them to deformation within the upper 
two units of the Luciano Mesa Member.  Rapaport et al. (1952) 
believed that the structures formed due to basinward creep of 
sediments during gentle uplift and warping of the area just after 
deposition, when the sediments were still behaving plastically.  
Rapaport et al. (1952) modified this earlier model to have the folds 
produced by slippage brought on by the Todilto being squeezed 
between the eolian Entrada and Summeville Formations.  

Green (1982) presented another variation on the sediment-
loading model.  As Summerville dunes migrated across the 
Todilto surface, the carbonates deformed or flowed to interdu-
nal areas were there was less loading.  As the dunes continued 
to migrate across the surface, smaller folds, fractures and faults 
formed in response to the differential loading.  To explain why the 

deformation was localized in the Ambrosia Lake District, Green 
(1982) called on differential water retention within the Todilto 
Formation.  The Todilto carbonates in the Ambrosia Lake area 
had dewatered less than in other areas within the basin; there-
fore the strata behaved plastically when the Summerville sands 
migrated across the surface.

Other workers on the fold-like structures have concluded that 
syndepositional uplift was occurring (Moench and Schlee, 1967), 
deformation was post-depositional, sub-Dakota deposition (Hil-
pert, 1969), early to middle Cretaceous tectonic movement pro-
duced a series of orthogonal folds (Gabelman and Boyer, 1988) 
and/or earthquake activity during Todilto deposition causing 
slumping and folding (Lucas et al., 2003).

Major drawbacks to a structural origin for these fold-like fea-
tures are the lack of preferential structural axes exhibited by the 
folds (Berglof and McLemore, 2003; Hines, 1976), which should 
be present if regional uplift or other structural deformation was 
involved.  In addition, the sediment-loading model of Green 
(1982) would require geologically instantaneous loading of the 
Todilto Formation by Summerville dunes to generate the early, 
large fold features in the interdunal areas.  Otherwise, the car-
bonates should have acted like toothpaste as the dunes marched 
across the Todilto surface, displacing the water-saturated carbon-
ates as they were loaded.  Also, the area that contains the most 
folds, along the edge of the basin, should have been exposed 
longer than the carbonates forming more basinward. This area 
should have dewatered at least to the same degree, if not more, 
than the rest of the carbonates in the Todilto Formation that do 
not contain folds.

FIGURE 4.  Paleogeographic and paleoclimatic reconstruction of early Jurassic time (Scotese, 2002).
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Diagenetic alteration within the Todilto strata has also been 
suggested as an origin for these structures.  Gabelman (1956) 
suggested dehydration and recrystallization of the mudstones. 
Bell (1963) thought that hydrating anhydrite to gypsum formed 
the crinkle lamination and the large folds within the Todilto car-
bonates and subsequent dissolution and calcitization of gypsum 
formed the porosity and the coarsely crystalline calcite.

Perry (1963) suggested that the folds were formed due to the 
deposition of Luciano Mesa reefs or bioherms, based on their dis-
tribution in outcrop and mine sections.  An algal origin was sug-
gested due to the presence of wavy and crinkly lamination and the 
lack of any other macrofauna besides a few ostracods.  Based on 
their appearance in outcrop as well as comparing them to modern 
environments, Rawson (1980) suggested that the features were 
stromatolites deposited in a sabkha environment.

Armstrong (1995) noted that some of the folds occurred on 
Entrada paleo-highs and had many features in common with car-
bonate tepee structures.  Tepee structures are polygonal expan-
sion features, and their name comes from their inverted-V shape.  
Tepee structures appear to form in a variety of settings ranging 
from caliche/soils to submarine submarine springs (Assereto and 
Kendall, 1971; Dunham, 1969; Kauffman et al., 1996; Kendall 
and Warren, 1987; Klappa, 1980; Warren, 1985), but they are 
most commonly associated with peritidal to supratidal deposi-
tional environments (Assereto and Kendall, 1977; Ferguson et 
al., 1982; Handford et al., 1984; Kendall and Warren, 1987; Lugli 
et al., 1999; Neese, 1989; Smith, 1974; Warren, 1982).  Their 
shape is the most diagnostic characteristic of tepee structures, 
but other features that may be present, depending on the depo-
sitional environment, include pisolites, brecciation, fractures, 
cements, erosional truncation, and fenestral fabrics.  The features 
that Armstong (1995) cited as possible tepee fabrics include the 
termination of the features at the Todilto/Summerville boundary, 
the upper surface showing signs of erosion and brecciation (Fig. 
5), similar depositional environments, syndepositional deforma-
tion on the flanks, fault-looking fracture systems, no preferen-
tial strain or fold axes, and the fractures are filled with material 
derived from the other overlying unit.  According to Armstrong 
(1995), the major drawback to describing these features as tepee 
structures is the lack of pisolites within the unit; although piso-
lites are not found in all tepee structures.

STROMATOLITES

Stromatolites form as a result of the metabolism of bacteria, 
cyanobacteria or algae that create laminated, benthic microbial 
mats and biofilms composed.  Stromatolites come in a variety of 
shapes and sizes and form in a wide variety of depositional envi-
ronments (i.e., lacustrine, shallow marine, travertines and tufas, 
and others).  

Stromatolites have been described elsewhere in the Todilto 
Formation, especially at the type section at Todilto Park, New 
Mexico (Fig. 6).  However, Lucas et al. (2003) stated that the 
structures at Todilto Park have been erroneously identified as 
stromatolites (Fig. 6) and ascribed intraformational folding to 
their formation.  The features are low-relief, domal, elliptical 

bodies that stick up through the overlying sediments.  The upper 
surfaces, where exposed, have a mottled (light and dark carbon-
ate) and lumpy appearance.  While intraformational deformation 
is a possibility, these same features could easily result from the 
growth of stromatolites.  

Modern and ancient depositional environments analogous to 
the proposed salina model for the Todilto Formation contain stro-
matolites; therefore, it would not be unrealistic to expect stro-
matolites in the Todilto deposits (Bradley, 1929; Duane and Al-
Zamel, 1999; Bradley, 1929; Eardley, 1938; Halley, 1976; Monty 
and Hardie, 1976; Surdam and Wray, 1976; von der Borch, 1976; 
Walter, 1976).  The Todilto depositional environment, with its 
interplay of marine and fresh waters making the coastal salina 
environment inhospitable for most invertebrates, would have 
provided ideal localities for the development of microbial mats 
and stromatolites.  Ancient stromatolites often show a preferred 
growth orientation (Carozzi, 1962; Dill et al., 1989; Förster and 
Wachendorf, 1977; Playford and Cockbain, 1976; Wright and 
Wright, 1985) and form rounded to elliptical domes.  In addition 
to the exterior morphologies, the clotted appearance of the struc-
ture is also very typical of stromatolites due to the alternation of 
clean lime mud (gray) and the more organic-rich mucilaginous 
mats or bacterial clusters (dark).  

In the Ambrosia Lake District, very similar looking structures 
occur but at a significantly larger scale than the Todilto Park 
example (Fig. 7a).  Here, the domal features can reach over two 
meters in height and over six meters in length, and their spac-
ing is roughly twice their length (Fig. 7b).  The structures all 
occur within the middle and upper members of the Luciano Mesa 
Member.  The domes do not continue into the overlying Summer-
ville Formation but end at the Todilto/Summerville contact. 

The external morphology of the features supports a biological 
origin for these structures.  The overlying units thin or pinch out 

FIGURE 5.  A schematic cross section through one of the intraforma-
tional “folds” (Berglof and McLemore, 2003; Finch and McLemore, 
1989; McLemore and Chenoweth, 2003).
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over the crests of the mounds or bioherms and thicken on the 
flanks, indicating that the mounds were positive features during 
Todilto deposition.  At the contact of the Todilto and Summer-
ville Formations, many of the upper surfaces of the mounds show 
evidence of multiple episodes of subaerial exposure (Fig. 7c).  
A drop in the water level in the salina interrupted later mound 
growth (Fig. 7c, units C and D).  This produced a highly irregular 
surface on unit C that was later filled in by unit D.  The upper 
units are irregular due to dissolution, and breccia clasts formed on 
the tops and flanks of the mounds (Fig. 8).  The presence of brec-
cia clasts indicates that the features were positive features before 
Summerville deposition and that the sediments were cemented 
and relatively rigid.  Todilto deposits not associated with mound 
growth fill surface irregularities on the mounds (Fig. 9) with sub-
sequent units being flat bedded.

Many of the bioherms or mounds consist of a large central 
mound with smaller mounds adjacent to the main body (Fig. 9).  
These appear to be satellite mounds growing off the main mound 
or bioherm.  Also, some of the mounds appear to have multiple 
episodes of mound growth, either as satellites (Fig. 9) off to the 
side or as later growth on established highs (Fig. 7c).  In Figure 
7c, early mound (A) growth was asymmetrical with a fold-like 
morphology.  The exposed surface of the mound has a mottled, 
clotted, lumpy appearance typical of microbial mat fabrics.  Due 
to changing depositional environments, the mound was probably 
drowned due to rising water levels resulting in the deposition of 
fine-grained, finely laminated carbonates on top of the feature.  
Another environmental change (shallowing?) resulted in the re-
establishment of mound growth (C and D).  

Internally, the mounds consist of finely to very coarsely crys-
talline, recrystallized calcite (Fig. 10a).  Within the mounds or 
bioherms, low- and high-relief microbial laminations are vis-
ible both on weathered and fresh outcrop surfaces (Fig. 10b).  
The high-relief laminations form reticulate patterns (Figs. 10a, 
b) similar to: those described by Wright and Wright (1985) in 

FIGURE 6.  Outcrop view of Todilto stromatolites at Todilto Park (from 
Lucas et al., 2003).  Note the lumpy, clotted looking surface; this is typi-
cal of stromatolites found elsewhere in the geologic record.

FIGURE 7.  A) A large, partially exposed mound in the streambed.  Note 
how the higher beds drape and thin over the mound crest and thicken 
slightly on the flanks.  This structure is approximately 5.5 m wide by 2.2 
m high.  B)  A photograph looking over several large mounds (arrows) 
exposed in the arroyo.  The large mounds are best exposed in the arroyos, 
but are visible throughout the outcrop area.  C)  A photograph of one of 
the smaller stromatolitic mounds (A).  This mound exhibits more than one 
episode of active stromatolite growth.  On top of Mound A, finer-grained, 
laminated sediments (B) drape the mound.  These sediments thicken 
slightly onto the flanks.  After deposition of the laminated units, mound 
growth continued (units C and D).  Due to the relief on the upper surface 
of C, there may have an exposure event before D was deposited.  Hammer 
for scale on top of mound.  Photograph courtesy of Spencer Lucas.
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Carboniferous stromatolites of Wales; modern, flabellate Scyto-
nema sp. algal stromatolites from freshwater marshes of Monty 
and Hardie (1976); and box-work boundstones of Warren (1982) 
in salinas of South Australia.  These boundstones are a type of 
fenestral limestone in which the preferred growth form is upward 
rather than horizontal.  On outcrop, these are the zones that also 
have highest porosity.  Other types of microbial lamination are 
the finely crystalline, low-relief, parallel laminites (Fig. 10b) 
and high-relief stromatolites (Fig. 10c).  Both of these types of 
boundstones have the light and dark banding (organic-rich layers 
are dark) common to most microbial deposits.

Locally, pockets of coarser grained carbonate debris (Fig. 11a) 
occur within the mounds.  Most of the clasts have been leached, 
but based on their size and shape, the clasts may have been mol-

FIGURE 8.  An upper surface on one of mounds consisting of cemented 
breccia clasts.  Scale is 5 cm long.

FIGURE 9.  A cross sectional view through one of the mounds.  Note the 
lumpy mound morphology and possible, smaller satellite mounds off to 
the side (black arrow).  Later deposits (white arrow) thin over the top of 
the mound and fill in the topography on the mound indicating it was a 
positive feature during Todilto deposition.  This mound is approximately 
5 m long and 2 m high.

FIGURE 10.  A)  A photograph of a coarsely crystalline, reticulate or 
box-work zone within the domal stromatolites.  In appearance, these 
stromatolites are similar to modern freshwater  Scytonema sp. (Monty 
and Hardie, 1976).  Long axis of sample equals 12 cm.  B)  A photograph 
of alternating reticulate/box-work and parallel lamination.  Long axis of 
sample equals 8 cm.  C)  A sample from one of the mounds exhibiting 
both the light and dark banding and the convoluted banding common to 
microbial mats.  Sample width is equal to 9 cm.
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lusks or mud rip-ups.  These zones probably represent storm 
events during mound formation.

Slightly to the northeast of the large domal mounds, the stro-
matolites become lower relief.  Here, the stromatolites exhibit 
centimeters rather than meters of relief.  The microbial lamina-
tion is easily visible on outcrop (Fig. 11b).  Like the mounds, 
microbial growth ranges from mostly horizontal growth forms 
grading upward into more reticulate varieties (Fig. 11c).  

CONCLUSIONS

If the mounds were due to intraformational deformation, one 
would expect to see more folding throughout the unit due to the 
movement of the sediments from one area to another.  Between the 
mounds or bioherms, the beds are flat lying with little evidence of 
deformation or flowage (Fig. 9).  As mentioned previously, since 
there are no preferred deformational fold axes (Hines, 1976), it is 
unlikely that the mounds are tectonic in origin.  If sediment load-
ing by Summerville eolian deposits caused deformation (Green, 
1982), the mound spacing appears to be inadequate to account for 
the size of the dunes responsible to get that degree of flowage.  
Also, the presence of early brecciation of the mounds indicates 
that sediments were probably too rigid to permit that amount of 
plastic flow in the Green (1982) model.  

Based on preliminary field data, large, domal, stromatolitic 
mounds/bioherms formed near Mesa Montañosa.  Due to their 
composition and morphology, these mounds were the result of 
microbial growth and not to intraformational deformation due to 
sediment loading (Green, 1982).  The mounds started forming 
during middle Luciano Mesa deposition and remained positive 
features until the end of Todilto deposition.  While similar struc-
tures elsewhere in the Todilto Formation have been attributed to 
intraformational or tectonic deformation, this study suggests that 
there may be more than one mechanism capable of producing 
fold-like in the Todilto Formation and a reassessment of previ-
ously identified structures may be needed.
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