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THE LATE OLIGOCENE CIENEGUILLA BASANITES,
SANTA FE COUNTY: RECORDS OF EARLY
RIO GRANDE RIFT MAGMATISM

JENNIFER LINDLINE, MICHAEL PETRONIS, RACHELL PITRUCHA, anp SALVADOR SENA

Environmental Geology Program, New Mexico Highlands University, P.O. Box 9000, Las Vegas, NM 87701, lindlinej@nmhu.edu

ABsTRACT—We conducted petrogenetic studies of 25-26 Ma Cieneguilla basanites of the Cieneguilla volcanic field in the
southern Espafiola Basin to improve our understanding of early Rio Grande rift magmatism. We sampled 3-4 lava flows at two
different locations north of La Cienega: an unnamed knoll (LCB1) and Cerro Seguro (LCB2). All sampled Cieneguilla basani-
tes are olivine porphyritic, magnetic, slightly vesicular, and relatively unweathered. They contain mildly to moderately altered
olivine phenocrysts in a very fine-grained framework of intergranular clinopyroxene-magnetite and interstitial nepheline. The
estimated titanium content of the Fe-Ti oxide phase ranges from 0.106-0.210 at LCB1 and from 0.019-0.115 at LCB2. The
Cieneguilla basanites are mildly alkaline and fall within the sodic series of the alkali olivine basalt scheme. They have low
silica values (42.40-44.10 wt %) and high MgO values (11.50-13.50 wt %) and are some of the most primitive eruptive products
in the central Rio Grande rift. The rocks display a narrow range of CaO (10.68-11.45 wt %), FeO+Fe,0, (12.37-13.25 wt %),
K 0 (0.61-1.05 wt %) and TiO, (2.16-2.37 wt %). Compatible trace elements, like Sr (758-1031 ppm), Cr (457-553 ppm), Ni
(263-288 ppm), and Co (61.1-67.6 ppm) show a wider range of concentrations. The major and trace element values are suffi-
ciently distinct between LCB1 and LCB2 to suggest that they are separate batches of magma, yet similar trace element patterns
suggest that they share a similar source. The basanites are enriched in LREE relative to HREE ((La/Yb),=18-26). They have
(La/Nb),, values between 1.2-1.5 and moderately high Nb/Ba and Ta/Ba ratios consistent with an origin from an ocean island
basalt-modified lithosphere source region. These data suggest that the Cieneguilla basanites have both asthenospheric and
lithospheric mantle components and that the Rio Grande rift contained mixed mantle source regions during its early history.
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INTRODUCTION

La Cienega, a historic village 30 km southwest of Santa Fe,
NM, hosts the Cienega volcanic field (Fig. 1) which comprises
several lava flows and monogenetic cones, including Cerro
Seguro (Figs. 1-3). The volcanic rocks include basanite, neph-
elinite, and basalt that overlie or intrude the Tertiary Espinosa
Formation (Koning and Read, 2010). They are major localities
for the Cieneguilla Limburgite Formation (Stearns, 1953 a, b;
Sun and Baldwin, 1958), which was redefined as the Cieneguilla
basanite by Koning and Hallett (2000), Sawyer et al. (2002) and
Koning and Read (2010). The Cieneguilla basanite is one of
the lowermost volcanic units in the La Cienega area. Near La
Cienega, the Cieneguilla basanite yielded a K-Ar age determina-
tion of 25.1+0.7 Ma (Baldridge et al., 1980) and a “°Ar/*°Ar age
determination of 26.08+0.62 Ma (Peters, 2000; Koning and Hal-
lett, 2000). These values are similar to a K-Ar date of 25.1+0.6
Ma (Kautz et al., 1981) and a “Ar/*°Ar date of 25.41+0.32 Ma
(Connell et al., 2002) obtained from an olivine tholeiite at Espi-
naso Ridge west of Cerrillos. The Cieneguilla basanites are sig-
nificant as these flows erupted before the main episode of Rio
Grande rifting (10 to 16 Ma) in northern New Mexico (Keller
and Cather, 1994).

We conducted a petrologic study of the Cieneguilla basanite
to improve our understanding of early Rio Grande rift magmatic
processes. We chose the Cieneguilla basanites because these low
volume lava flows have the potential to yield information about
mantle source region(s) without the problems of open-system
magmatism and/or crustal contamination that have been observed
in large-scale volcanism in northern New Mexico (Singer and
Kudo, 1986; Duncker et al., 1991; Wolff et al., 2000; Wolff et al.,

2005). Previous workers (Stearns 1953 a, b; Sun and Baldwin,
1958) studied the Cieneguilla basanites in the context of broader
studies of volcanic rocks of the Cienega area. They reported
petrographic features and major element analysis noting the low
silica content of the flows. This is the first report of trace and rare
carth element geochemistry of the Cieneguilla basanites and the
first petrogenetic study of these flows.

GEOLOGY
Setting

The Rio Granderift is a late Cenozoic continental rift extending
south from at least Leadville, Colorado to Chihuahua, Mexico. It
represents the easternmost expression of widespread continental
extension in the western United States during the past 30 mil-
lion years. The Rio Grande rift is characterized by normal fault-
ing, basin formation, and predominantly mafic volcanism. The
northern part of the rift is relatively narrow, consisting of an array
of north-trending westward-stepping, en echelon basins, includ-
ing the Espafiola Basin, separated by northeast-trending oblique
accommodation zones (Rosendahl, 1987; Chapin, 1988) (Fig. 1).
The Cienega volcanic field lies at the southern periphery of the
intersection of the Rio Grande rift and the Jemez Lineament, an
800-km-long alignment of late Cenozoic volcanic fields (Aldrich
1986). The lineament is considered to be related to a complex
suture zone between the Mesoproterozoic Southern Yavapai and
the Mazatzal lithospheric provinces (Magnani et al., 2004).

The Cieneguilla basanite volcanoes are located west of the
southern Sangre de Cristo Mountains on an elevated structural
plateau in the southern Espafiola Basin (Fig. 2) that exposes pre-
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FIGURE 1. Index map of the Rio Grande rift in northern New Mexico showing principal faults, volcanic features, and basins. CF—Cocida fault,
LBF-La Bajada fault, PF—Pajarito fault, SAF—Santa Ana fault, SFF—San Francisco fault, BB— Bearhead basin, CdRvf—Cerros del Rio volcanic field,
SFvf-San Felipe volcanic field, and Cvf-Cienega volcanic field. Figure modified from Smith et al. (2001).
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FIGURE 2. Topographic map of the La Cienega area showing the distribution of Cieneguilla basanites (Tc) and sampling localities.
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rift and early rift igneous and sedimentary deposits. The area is
separated from younger basalt flows of the Cerros del Rio vol-
canic field to the west by a steep canyon carved by the Santa Fe
River as it merges with its main tributary, Cienega Creek, and
flows westward toward the Rio Grande. The small volume and
somewhat massive Cieneguilla basanite flows erupted through
Eocene sedimentary rocks and Tertiary volcanic rocks (Koning
and Read, 2010), some of which are related to a north trend-
ing chain of volcanic centers of monzonitic-latitic activity that
includes the Cerrillos and Ortiz Mountains.

The Cieneguilla basanite crops out on Cerro Seguro and sev-
eral unnamed hills north and northwest of the historic village of
La Cienega (Fig. 3). La Cienega was part of the original La Ciene-
guilla land grant, which the king of Spain conferred to Francisco
de Anaya de Almazan in 1695. The area was an important stop-
ping point (paraje) along the famous Camino Real, the royal road
from Mexico City to Santa Fe. Both La Cienega and La Ciene-
guilla were built over prehistoric pueblos and boast hundreds of
petroglyphs dating from pre-contact time and from the Spanish
colonial era. The petroglyphs can be found along the Santa Fe
River escarpment that includes the Cieneguilla basanites as well
as basalts of the younger (2.3-2.8) Cerros del Rio volcanic field
(WoldeGabriel et al., 1996).

We sampled the Cieneguilla basanites at two locations: an
unnamed hill (LCB1; n=4) and Cerro Seguro (LCB2; n=3) (Fig.
2). We collected samples at several elevations within the individ-
ual flow sequences to gain a cross-sectional perspective. At each
site, the uppermost flow is noted with the letter A and succes-
sively lower flows are noted with the letters B, C, and D respec-
tively. We studied the rocks macroscopically, petrographically,
magnetically, and geochemically.

CERRILLOS HILLS

LAS TETILLITAS

FIGURE 3. View southwest from Cieneguilla basanite site LCB1. Of
note are the Cerrillos Hills, which are underlain by the 34-30 Ma Cerril-
los Hills Igneous Complex (Maynard, 2005); Las Tetillitas cones of the
<3.0 Ma Cerros del Rio volcanic field (WoldeGabriel et al., 1996); and
Cerro Seguro and the hill in the foreground, both comprised of 25-26 Ma
Cieneguilla basanite.
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Field Characteristics

The Cieneguilla basanites crop out as small knolls in the
Cienega volcanic field. Each hill consists of five or more flows
that are a meter or more in thickness. Individual flows dip mod-
erately to the east and are identified by a subtle planar parting
parallel to the hill contours and a rubble zone at the base of the
fracture planes (Fig. 4). Individual flows can be traced only
short distances vertically and laterally because of discontinuous
exposures. The basanites are chocolate brown on weathered sur-
faces and dark black on freshly exposed surfaces. The rocks are
very-fine grained, aphyric to slightly porphyritic, and sometimes
vesicular. Unlike many basalts in the region, the rocks show little
pedogenic carbonate mineralization. All of the flows are strongly
magnetic. The flows at LCB1 are unconformably overlain by
light-colored unconsolidated sands and gravel of the upper
Pliocene to lower Pleistocene Ancha Formation of the Santa Fe
Group (Koning and Read, 2010). The Cerro Seguro basanites
erupted through a Tertiary (Koning and Read, 2010) augite- and
plagioclase-porphyritic felsite intrusion and contain centimeter to
decimeter-sized xenoliths of the felsite at lower elevations (Figs.
5 and 6). Basanite at the top of Cerro Seguro shows a monolithic
agglomeritic texture and is interpreted as an eruptive center. The
agglomerate is approximately 15 m thick and overlies approxi-
mately 60 m of dense basaltic lavas.

Petrography

Petrographic analysis of 7 thin sections prepared from each
of the sampled Cieneguilla basanite flows was completed using
a Meiji Techno 9000-series polarizing microscope. Crystal size
was measured using a stage micrometer. Modal mineral analyses

FIGURE 4. Field photograph of the Cieneguilla basanite at site LCB1-A.
Hammer (30 cm length) for scale. The contact between flows is defined
by a weak planar parting as well as a rubble zone at the base of each flow.
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FIGURE 5. Field photograph of the Cieneguilla basanite at Cerro
Seguro, site LCB2-A. Hammer (30 cm length) for scale. Note the
agglomeritic texture of the basanite indicating proximity to the vent.

of the 7 sections were made using a Priori Scientific Model G
automatic point counter set at an interval spacing of 0.25 x 0.25
mm.

The samples are holocrystalline and consist of four primary
minerals: olivine, clinopyroxene, magnetite, and nepheline.
Modal mineral analysis, based on 1000 point counts, is presented
in Table 1. Three repeated analyses of one sample (LCB1-A) indi-
cate that counts are reproducible within 2.45 vol. %. In contrast
to the findings of Sun and Baldwin (1958), glass was not pres-
ent in any of our samples. The samples are porphyritic to partly
glomerophyric. Euhedral to subhedral olivine phenocrysts have
an average diameter of 0.35 mm with one rare crystal measuring
8.0 mm in length. Olivine phenocrysts make up approximately
25% of the rock with nearly 50% of the phenocrysts being unal-
tered and the remainder being altered to iddingsite. The ground-
mass comprises interlocking euhedral clinopyroxene (<0.10-0.70
mm) and magnetite crystals (0.10-0.25 mm) with interstitial and
unaltered nepheline. The magnetite crystals display a homoge-
neous pale gray reflectivity.

FIGURE 6. Field photograph of the Cieneguilla basanite at Cerro
Seguro below site LCB2-C. The marker (10 cm length) is placed for
scale. Note the white salt-pepper textured augite- and plagioclase-por-
phyritic felsite xenoliths throughout the basanite.

Rock Magnetism

We conducted an analysis of the high-temperature low-field
magnetic susceptibility on one sample from each of the 7 flows
to describe the magnetic character of the Cieneguilla basanites.
All susceptibility experiments were measured with an AGICO
MFKI1-A kappabridge with a CS-4 attachment at the New
Mexico Highlands University Paleomagnetism-Rock Magne-
tism Laboratory. The low-field susceptibility measurements were
carried out in a stepwise heating/cooling fashion from 25°C to
700°C to 40°C in an argon atmosphere. Approximately 0.55 g of
powdered sample from each lava flow was used in each analy-
sis. The susceptibility experiments allow for an evaluation of the
magnetic mineral composition based on Curie point estimates
and assist with revealing mixtures of magnetic phases within
a given sample. Pure magnetite has a Curie point of ~580°C,
which decreases nearly linearly with increasing Ti substitution to

TABLE 1. Cieneguilla basanite modal mineralogy presented as percentages. Modes were calculated based on 1000 point counts.

Replicate analysis of LCB1-A showing reproducibility of counts within 2.45 volume percent.

LCB1-Al LCB1-A2 LCB1-A3 AVG STD DEV
olivine 9.30 12.00 12.90 11.40 1.53
clinopyroxene 46.90 45.60 47.10 46.53 0.66
nepheline 8.10 9.30 9.20 8.87 0.54
magnetite 23.50 20.80 17.50 20.60 2.45
iddingsite 12.20 12.30 13.30 12.60 0.50

Analysis of the individual basanite samples showing variability within the sample set.

LCB1-Al LCB1-B LCB1-C LCB1-D LCB2-A LCB2-B LCB2-C AVG STD DEV
olivine 9.30 10.30 12.60 10.40 12.30 9.90 17.40 12.04 2.38
clinopyroxene 46.90 39.40 47.30 43.70 44.30 34.90 30.90 41.00 5.74
nepheline 8.10 25.00 11.40 17.70 18.20 23.70 29.10 19.14 6.79
magnetite 23.50 10.20 19.40 1.30 13.20 17.30 12.30 13.47 6.11
iddingsite 12.20 15.10 9.30 16.90 12.30 14.20 10.30 12.96 2.47
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approximately -150°C for pure ilmenite (Readman and O’Reilly
1972; Nishitani and Kono, 1983; Moskowitz, 1987). Susceptibil-
ity experiments, therefore, provide a quantitative means to esti-
mate Fe-Ti oxide mineral composition based on the Curie point
when a single magnetic phase is present within the sample (Aki-
moto, 1962). Reported Curie points of other common minerals
include hematite (675°), pyrrhotite (320°), and greigite (~330°C)
(Dunlop and Ozdemir, 1997). All inferred Curie points were esti-
mated using either the inflection point (Tauxe, 1998) or Hopkin-
son peak methods (Moskowitz, 1981).

Results from the susceptibility experiments are shown in
Fig. 7. In general, the rock magnetic results between the lower,
middle, and upper parts of the two sampled lava flow sections
vary considerably indicating a strong variation in magnetic min-
eralogy between individual lava flows and between locations.
The samples yield a spectrum of results that vary from near
reversible curves with a single Curie point to more complex irre-
versible curves. On heating, five of the seven samples (LCB1-A,
-B, -C, and D and LCB2-C) monotonically increase in suscepti-
bility with a strong spike in susceptibility at the Curie point which
we interpret as a Hopkinson peak (Moskowitz, 1981) at 453°C,
517°C, 475°C, 512°C, and 512°C respectively. The remaining
two samples (LCB2-A, -B) yield more complex heating curves
with a broad roll-over that lacks a strong spike in susceptibility.
For these two samples, the Curie point was estimated based on
the inflection point method (Tauxe, 1998) with values at 557°C
and 571°C respectively. All samples are nonreversible on cooling
indicating that a change in the magnetic mineralogy has occurred
during the heating experiment. The room temperature susceptibil-
ity for all samples yields intensities in the range of 0.001-0.0001
SI, consistent with a ferromagnetic mineral phase (Dunlop and
Ozdemir, 1997). The Curie point estimates indicate that the ferro-
magnetic mineral phase is a low- to moderate-Ti titanomagnetite
which is typical of unaltered basalts.

The susceptibility on the cooling curve of three flows (LCB1-
A, -B, and -D) is less than the room temperature susceptibility
which may indicate that the magnetic fraction is being altered by
heating resulting in a phase with a lower susceptibility. Hrouda
(2003) concluded that the nature of this alteration is difficult to
fully characterize, yet these results are typically interpreted to
indicate that the magnetic mineral that homogenizes is titano-
maghemite (Ozdemir and O'Reilly, 1981 and 1982). Moreover,
Hrouda (2003) points out that the lower susceptibility during
the cooling cycle may result from (1) the inversion of titanoma-
ghemite to titanium-poor magnetite plus ilmenite during heating
and/or (2) the reduction of these phases to form titanomagnetite.
Alternatively, the lower susceptibility on the cooling may simply
be an artifact of the measurement procedure controlled by the
oxygen fugacity of the oven.

The susceptibility on the cooling curve of all three flows from
Cerro Seguro (LCB2-A, -B, and -C) and one flow from site 1
(LCBI1-C) on the cooling curve is greater than the room tem-
perature susceptibility. This behavior often reflects the situation
when a new magnetic phase (magnetite) is generated by heating
of a less magnetic phase. The nonreversibility of the curves indi-
cates that a mineralogical change occurred during the experiment
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(Ozdemir and O'Reilly, 1981; 1982). The oxidation of the Fe-Ti
oxide phase(s) is inhomogeneous, and during the heating experi-
ment the mineral in some fashion “homogenizes” to a more sus-
ceptible phase as reflected by the modest increase in susceptibil-
ity (e.g., Hrouda et al., 2006). This behavior is often indicative of
low-temperature oxidation, a phenomenon which is commonly
observed in submarine basalts (Irving, 1970; Marshall and Cox,
1972; Johnson and Atwater, 1977).

Using the equations from Akimoto (1962) and the titanomag-
netite solid solution series Fe, Ti O, where x=titanium content,
we calculated the composition of the Fe-Ti oxide phase within
each flow (Table 2). The calculated titanium content (number of
ions) of the Fe-Ti oxide phase ranges from 0.106-0.210 at the
first flow sequence and from 0.019-0.115 at Cerro Seguro. These
values correspond to a low- to moderate-Ti titanomagnetite
phase. The titanomagnetite composition varies within each flow
sequence as well as between the flow sequences.

Geochemistry

The bulk rock chemistry of 7 Cieneguilla basanite samples
was determined by Activation Laboratories, Ltd., Ontario,
Canada. Geochemical data are presented in Tables 3 and 4. All
major elements are reported in wt. % oxides; all trace elements
are reported in ppm. Samples were digested by fusion with LiBO,
then analyzed for major and trace elements by ICP-MS. Quality
control standard analyses show an accuracy of + 0.65 wt. % for
Si0,, £ 0.35 wt. % for ALO,, and + < 0.20 wt. % for all other
major elements. Accuracy is better than 1% for all trace elements,
excepting Cu, V, and Sr for which the concentration of the stan-
dard was nearly out of range for the analytical technique. Loss on
ignition values range from 0.68-1.23 wt. %, which is low to aver-
age for reported Rio Grande rift basalts (Maldonado et al., 2006).
For graphical analysis of the major element oxides, the chemical
data were normalized to a volatile-free basis. Likewise, the cation
normative mineralogy was calculated according to the methods
of Irvine and Baragar (1971) adjusting the Fe,O,/FeO ratio and
recalculating the analyses to 100% on a volatile-free basis.

TABLE 2. Calculated titanium content of the Fe-Ti oxide phase in the
Cieneguilla basanites.

Sample Curie point (°C) Ti-Composition
LCBI1-A 453 0.210
LCB1-B 517 0.106
LCB1-C 475 0.174
LCBI1-D 512 0.115
LCB2-A 557 0.042
LCB2-B 571 0.019
LCB2-C 512 0.115
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FIGURE 7. Continuous low-field susceptibility vs. temperature experiments from 25°C to 700°C and cooling to 40°C. Results are consistent with the
presence of an Fe-Ti oxide phase, likely titanomagnetite. The Ti-content of the titanomagnetite varies within each flow sequence as well as between
the two flow sequences.
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TABLE 3. Whole rock major element analyses (oxide wt %) and calculated cation normative minerals for the Cieneguilla basanites.

LCB1-A LCB1-B LCB1-C LCB1-D LCB2-A LCB2-B LCB2-C
[13S] EASTING 0397274 0397274 0397274 0397360 0396926 0396978 0397098
NORTHING 3938018 3937979 3937964 3937946 3936922 3936958 3936887
Sio, 42.83 44.09 43.60 43.46 42.76 42.40 42.84
ALO, 12.00 12.50 12.47 12.44 12.31 12.04 12.07
FeOmeas 8.11 8.19 8.95 8.41 5.24 6.79 7.29
Fe,O,calc 4.89 5.06 4.14 4.67 7.42 5.58 5.16
MnO 0.20 0.20 0.20 0.20 0.21 0.20 0.20
MgO 12.30 11.50 12.10 11.97 11.78 13.25 13.08
CaO 10.84 10.69 10.68 10.89 11.45 11.27 11.25
Na,O 2.72 2.62 2.72 2.77 2.96 2.92 3.00
K,0 0.61 0.78 0.76 0.76 1.05 1.02 0.98
TiO, 2.32 2.19 2.37 237 2.19 2.16 2.17
PO 0.77 0.68 0.76 0.76 0.96 0.90 0.89
CO, 0.06 0.03 0.10 0.16 0.06 0.09 0.07
H,0+ 1.50 1.40 1.50 1.60 1.60 1.60 1.50
H,0- 0.10 0.20 0.20 0.20 0.20 0.20 0.10
TOTAL 99.15 99.93 100.35 100.46 99.98 100.22 100.50
%AN 57.62 55.14 56.83 58.08 66.00 72.12 68.13
or 3.67 4.67 4.52 4.53 6.27 6.04 5.78
ab 14.04 16.53 14.98 14.02 8.96 6.48 7.74
an 19.09 20.32 19.71 19.42 17.40 16.76 16.54
ne 6.50 4.39 5.77 6.63 10.75 11.87 11.48
di 24.46 23.15 22.92 24.03 26.97 26.68 26.68
ol 23.24 22.50 23.09 22.35 20.64 23.45 23.08
mt 4.07 391 4.08 4.08 3.90 3.83 3.83
il 3.29 3.09 3.33 3.33 3.08 3.01 3.02
ap 1.64 1.44 1.60 1.60 2.03 1.88 1.86

Note: Total iron was reported as Fe,O,. FeO(meas) was measured through titration according to the methods of Wilson (1955). Fe,O,(calc) was
calculated from the difference between measured total Fe,O, and FeO(meas). CO, was determined coulometerically and H,O+/H,O- was determined
gravimetrically. A 0.3 g sample was thermally decomposed in a resistance furnace in a pure nitrogen environment at 110°C (moisture, H,0-) followed
by decomposition at 1000 °C (interstitial water, H,O+) using an ELTRA CW-800. Normative mineral abbreviations are as follows: AN=anorthite; or=
orthoclase; ab=albite; ne=nepheline; di=diopside; ol=olivine; mt=magnetite; il=ilmenite; and ap=apatite.

All samples show a low and narrow range of silica (42.40-
44.09 wt %), though intermediate silica compositions (up to
65.16 wt %) have been noted for volcanic rocks in the Cienega
volcanic field (Sun and Baldwin, 1958). The samples are alkaline
in composition and part of the sodic series of the alkaline olivine
basalt series according to the classification schemes of Irvine and
Baragar (1971) (Fig. 8). The samples are silica undersaturated
and nepheline normative (4-12% ne). Geochemical variation dia-
grams are displayed in Figure 9. Samples are plotted against MgO
to best differentiate their major oxide and trace element variation.
MgO contents of our analyzed samples range from 11.50-13.25
wt %. Across the MgO spectrum, the rocks display a narrow
range of CaO (10.68-11.45 wt %), FeO+Fe,0, (12.37-13.25 wt
%), K,O (0.61-1.05 wt %) and TiO, (2.16-2.37 wt %). Compat-
ible trace elements, like Sr (758-1031 ppm), Cr (457-553 ppm),
Ni (263-288 ppm), and Co (61.1-67.6 ppm) show a wider range
of concentrations. The major and trace element values are suffi-
ciently distinct between LCB1 and LCB2 to suggest that they are
separate batches of magma. LCB1 flows have higher FeO+Fe,0O,,
TiO,, and Co and lower CaO, KO, Sr, and Ba than LCB2 flows.

However, whether samples from each site are considered sepa-
rately or as a composite suite, there are no strong trends in major
and trace element variations relative to MgO.

Incompatible element and rare earth element (REE) variation
plots are shown in Figure 10. The multi-element spectra (Fig.
10a) of these rocks show essentially flat incompatible element
patterns between Ba and P, but negative anomalies at K and Sr
relative to other trace elements. The basanites are enriched in
light rare earth elements (LREE) relative to the heavy rare earth
elements (HREE), with (La/Yb), ratios varying from 18-26. They
have highly incompatible trace element (La/Nb), ratios between
1.15-1.32 and low concentrations of large ion lithophile elements
(LILE) relative to LREE, with (Ba/La), ratios varying from 0.44-
0.49.

The tectonic discriminant diagrams FeO-MgO-AlLO, (after
Pearce et al., 1977) and Ti/100-Zr-Y *3 diagram (after Pearce and
Cann, 1973) were used to compare the geochemistry of the Ciene-
guilla basanites to the empirically determined geochemistry of
rocks from modern-day tectonic environments (Fig. 11). Magma
varies in composition depending on its source area; therefore,
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TABLE 4. Whole rock trace and rare earth element analyses (ppm) for the Cieneguilla basanites.

LCB1-A LCB1-B LCB1-C LCB1-D LCB2-A LCB2-B LCB2-C

Ba 619 537 628 618 846 854 858
Co 67.6 64.8 62.8 63.6 62.6 61.8 61.1
Cr 500 457 472 486 549 553 532
Cu 70 78 85 68 67 62 68

Ni 287 263 286 283 284 288 280
Sc 29.6 28.2 28 28.2 29.5 29.6 28.8
Sr 790 758 854 920 1031 990 1030
v 270 272 273 273 269 262 295
Y 23 23 24 25 25 24 25

Zn 94 102 105 100 93 90 91

Cs 1.4 4.7 21.5 46.9 0.6 0.6 0.6

Ga 19 18 19 19 19 18 19

Ge 1.5 1.3 1.5 1.5 1.5 1.5 1.5

Hf 5.9 52 5.7 5.7 5.7 52 5.9

Nb 54.8 46.4 55.2 55.5 71.7 70.9 79.7
Rb 21 26 26 23 43 43 37

Ta 3.85 3.28 3.66 3.71 4.75 4.58 4.88
Th 11.6 10.4 10.9 10.7 12 11.7 12.2
U 3.05 2 2.43 2.44 2.93 2.85 2.89
Zr 260 228 265 259 274 257 279
La 64.9 579 62.4 63.8 85.2 84.2 86.7
Ce 132 115 127 130 167 164 171

Pr 16.2 13.1 15.8 15.9 19.3 19 19.3
Nd 64.1 51.8 62.1 62.1 72.8 71.5 73.9
Sm 11.9 9.53 11.5 11.4 13.1 12.8 13.2
Eu 3.27 2.72 3.25 3.25 3.63 3.55 3.65
Gd 9.69 7.61 9.67 9.32 10.2 9.93 10.2
Tb 1.27 1.05 1.23 1.21 1.33 1.3 1.33
Dy 6.15 5.28 6.09 5.91 6.19 6.16 6.21
Ho 1.1 0.93 1.06 1.06 1.1 1.07 1.11
Er 2.81 24 2.76 2.71 2.83 2.72 2.85
Tm 0.366 0.316 0.364 0.352 0.361 0.356 0.369
Yb 2.21 1.97 2.28 2.23 2.22 2.16 2.21
Lu 0.322 0.298 0.323 0.326 0.325 0.317 0.323

analyzing the concentrations of elements that differ with source
region makes it possible to determine the source area of igneous
extrusive rocks. The FeO-MgO-Al O, diagram (Fig. 11a) shows
that the Cieneguilla basanites have compositions similar to ocean
island basalts while the Ti/100-Zr-Y*3 diagram (Fig. 11b) shows
that the Cieneguilla basanites have source regions comparable to
basalts originating from a within-plate environment.

A number of authors have delineated several chemical types
of mantle source for Rio Grande rift mafic volcanism in New
Mexico (Perry et al., 1987, 1988; Bradshaw et al., 1993; McMil-
lan, 1998; and McMillan et al., 2000) using trace element and
isotopic signatures. The first source region is the convecting
asthenosphere, which is isotopically depleted relative to litho-
spheric reservoirs and has ocean island basalt trace element pat-
terns, particularly high Ta/Ba and high Nb/Ba. The second source
region is the lithospheric mantle modified by fluids derived from
the convecting asthenosphere (McKenzie, 1989) which produces
small degree partial melts under the continents. These fluids

impart high Ta/Ba and Nb/Ba and low Ba/La ratios to the litho-
spheric mantle (McMillan, 1998). The third source region is the
lithospheric mantle modified by subduction zone fluids that are
rich in fluid-mobilized elements, like Ba, Rb, and Sr. This source
region is characterized by high Ba/La and by low Ta/Ba and Nb/
Ba as the high field strength elements Ta and Nb are retained in
the slab during dehydration and partial melting. Both lithospheric
source regions have enriched isotopic signatures (g ,~+1 and
7S1/%Sr=0.7040-0.7045) that developed over a protracted history
as incompatible-rich basaltic magmas and/or metasomatic fluids
high in Rb/Sr and Sm/Nd were intruded into the lithosphere and
isolated from the underlying convecting asthenosphere. To fur-
ther evaluate the source region(s) of the Cieneguilla basanites,
we compared their trace element compositions to Rio Grande rift
source regions. The Cieneguilla basanites have moderately high
Nb/Ba and Ta/Ba ratios similar to Rio Grande rift lavas erupted
from an ocean island basalt-modified lithosphere source region
(Fig. 12).
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DISCUSSION

The holocrystalline Cieneguilla basanites crystallized pheno-
crysts of olivine followed by intergranular (titano-)magnetite and
clinopyroxene then late interstitial nepheline. The titanomagne-
tite lacks exsolution textures signifying fast-ascent eruption. The
basanites do not show evidence for fractional crystallization, as
the modal mineralogy is fairly consistent between the lava flows
at each site as well as between the two sites. This is supported
by the narrow range of most major oxides as well as the narrow
range in most compatible trace elements. The calculated titanium
content of the Fe-Ti oxide phase ranges from 0.106-0.210 at the
first flow sequence and from 0.019-0.115 at Cerro Seguro. These
values indicate that the Cieneguilla basanites contain a low- to
moderate-Ti titanomagnetite phase, but that the composition of
the titanomagnetite varies between the two studied sites as well
as within lava flows from each site. These results could indicate
that the magma chamber was evolving quickly between indi-
vidual eruptions, being replenished by pulses of magma into the

chamber following eruption, or undergoing a change in oxygen
fugacity. Given the low degree of mineralogical and chemical
variation between the lava flows, it is unlikely that the magnetic
mineralogy is reflecting differentiation of the magma chamber.
Likewise, exsolution lamellae, the degree and scale of which
are controlled by variations in cooling rate and oxygen fugacity
(Turner et al., 2008), are absent from the titanomagnetite crystals.
Thus, it is likely that the variable Ti-content in the titanomagne-
tite reflects new magma pulses having slightly different bulk rock
chemistries. The major and trace element data from the first flow
sequence differ from those from Cerro Seguro also implying dif-
ferent magma batches. These batches could have erupted from
two discrete magma chambers or there were slight changes in the
composition of magma replenishing a single chamber.

Mantle Source Region
The Cieneguilla basanites are mildly alkaline and fall within

the sodic series of the alkali olivine basalt scheme. They have low
silica values (42.4-44.1 weight percent) and high MgO values
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(11.5-13.5 weight percent) and are some of the most primitive
eruptive products in the central Rio Grande rift. The Cieneguilla
basanites are sufficiently mafic that their incompatible trace ele-
ment compositions are controlled mainly by their mantle source
region(s). Despite the presence of felsite xenoliths in the Cerro
Seguro flows, there does not seem to be any geochemical indica-
tion of assimilation or contamination by a crustal component. In
fact, the Cerro Seguro flows have the most primitive composi-
tions of the samples collected for this study.

The Cieneguilla basanites are enriched in highly incompatible
trace elements (LREE), large ion lithophile elements (Ba, Rb,
and K), and high field strength elements (Th and Ta) relative to
chondrite (Fig. 10) indicating an undepleted (primitive) and/or
enriched mantle source. The basanites are enriched in the LREE
relative to the HREE (La/Yb) =18-26. Chondrite-normalized
trace element patterns show a strong enrichment in most incom-
patible elements, but marked depletions in K and Rb relative to

LINDLINE, PETRONIS, PITRUCHA, anp SENA

light rare earth elements, Nb, Ta, and Th. These are character-
istics of strongly silica-undersaturated ocean island basalts. The
basanites have (La/Nb) values 1.2-1.5, which are also character-
istic of ocean island basalts (Gibson et al., 1991). The K-trough
on the multi-element spectra is a characteristic feature of many
small-degree partial melts that may denote the incomplete resorp-
tion of potassic amphibole or phlogopite in the mantle source
(Fitton and Dunlop, 1985).

While both the asthenospheric and lithospheric mantle contrib-
uted to mafic magmatism throughout the Rio Grande rift, central
Rio Grande rift mafic magmatism, which includes volcanic fields
extending from Socorro, New Mexico, to Leadville, Colorado,
has been largely attributed to subduction-modified lithospheric
mantle which formed from reservoirs established during Protero-
zoic craton development and affected by slab fluids (McMillan,
1998; Baldridge, 2004). Some Espaiiola Basin volcanic rocks
having high Ta/Ba and Nb/Ba ratios were interpreted as asthe-

FeO*

MgO

Ti/100

Island- arc A,B
Ocean-floor B
Calc-alkali B,C

Within-plate D

Zr Y*3

FIGURE 11. Tectonic discrimination diagrams after (A) Pearce et al.
(1977) and (B) Pearce and Cann (1973). Solid circles represent samples
from LCBI1 and open circle represent samples from LCB2. The Ciene-
guilla basanites plot in the “ocean island” and “within-plate” fields.
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1998). The moderately high Nb/Ba and moderately high Ta/Ba ratios for the Cieneguilla basanites are similar to Rio Grande rift lavas originating from

an ocean island basalt-modified lithospheric source.

nospheric melts by Gibson et al. (1992, 1993). McMillan (1998)
rejected this notion based on some rocks plotting outside of the
modern ocean island basalt fields on tectonic discriminant dia-
grams and isotopic values that are different and wider ranging
than those ascribed to the Oligocene asthenosphere. Rather, the
Espaiiola Basin volcanic rocks were interpreted as partial melts
of an ocean island basalt-modified lithosphere. The plotting of the
studied Cieneguilla basanites on tectonic discriminant diagrams
(Fig. 11) indicates that the source for the basanites was a within
plate ocean island mantle-like reservoir. The moderately high Ta/
Ba and moderately high Nb/Ba ratios are indicative of an ocean
island basalt-modified lithospheric mantle source, which is con-
sistent with McMillan’s (1998) interpretation for < 26 Ma vol-
canic rocks from the southern Espafiola Basin. Thus, the Ciene-
guilla basanites have a mixed asthenospheric and lithospheric
mantle source. Crow et al. (2011) proposed a model for progres-
sive infiltration and replacement of lithospheric mantle by asthe-
nospheric mantle in the Colorado Plateau during the Neogene
where Proterozoic boundaries, like the Jemez lineament, exist.
Our data suggest that modification of lithosphere by upwelling
asthenosphere created mixed mantle source regions during the
early (pre-Neogene) development of the Rio Grande rift.

CONCLUSIONS

Based on the data presented in this study, we conclude the fol-
lowing:

1) The Cieneguilla basanites are some of the most primitive
eruptive products in the Cienega volcanic field in particular and
the Rio Grande rift in general. They display a low and narrow
range of silica (42.40-44.09 wt %) and narrow and high range of
MgO (1.50-13.25 wt %).

2) The Ti-content in the titanomagnetite varies between 0.106-
0.210 at the first flow sequence and from 0.019-0.115 at Cerro
Seguro suggesting that different batches of magma erupted from

discrete magma chambers at each site, or that there were slight
changes in the composition of magma replenishing a single
chamber.

3) Major and trace element values from the first flow sequence
differ from those from Cerro Seguro again suggesting that each
site represents different batches of magma.

4) The Cieneguilla basanites have trace element characteris-
tics, including (La/Yb), values between 18-26, (La/Nb), values
between 1.2-1.5, and moderately high Ta/Ba and Nb/Ba ratios,
that correspond to an ocean island basalt-modified lithosphere
source region. This implies that the Cieneguilla basanites have
both asthenospheric and lithospheric mantle components.

5) The Rio Grande rift contained mixed mantle source regions
during its early (pre-Neogene) history.
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