Late Eocene (Chadronian) fossil mammals from the Palm Park Formation, Caballo Mountains, Sierra County, New Mexico

Spencer G. Lucas and Justin A. Spielmann
2012, pp. 519-524. https://doi.org/10.56577/FFC-63.519

in:

This is one of many related papers that were included in the 2012 NMGS Fall Field Conference Guidebook.

Annual NMGS Fall Field Conference Guidebooks

Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico.

Free Downloads

NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, and other selected content are available only in print for recent guidebooks.

Copyright Information

Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. No material from the NMGS website, or printed and electronic publications, may be reprinted or redistributed without NMGS permission. Contact us for permission to reprint portions of any of our publications.

One printed copy of any materials from the NMGS website or our print and electronic publications may be made for individual use without our permission. Teachers and students may make unlimited copies for educational use. Any other use of these materials requires explicit permission.
This page is intentionally left blank to maintain order of facing pages.
LATE EOCENE (CHADRONIAN) FOSSIL MAMMALS FROM THE PALM PARK FORMATION, CABALLO MOUNTAINS, SIERRA COUNTY, NEW MEXICO

SPENCER G. LUCAS AND JUSTIN A. SPIELMANN
New Mexico Museum of Natural History and Science, 1801 Mountain Rd. NW, Albuquerque, NM 87104

ABSTRACT—The Palm Park Formation in the southern Caballo Mountains of Sierra County, New Mexico, is a volcanoclastic deposit overlain by the ~36 Ma Bell Top Formation. The vertebrate fauna of this formation includes: turtles (aff. Stylemys sp. and an emydid) and four identifiable mammal taxa (Hyænocodon horridus, Hyracodon sp., Mesohippus cf. M. texanus and Merycoidodon presidioensis). Much of the turtle material consists of vertebral elements and isolated shell fragments. Hyænocodon horridus is recognized from a maxillary fragment. Dentary fragments with damaged teeth indicate the presence of Hyracodon sp., and a dentary with cheek teeth documents the presence of Mesohippus cf. M. texanus. The most complete specimen from the Palm Park Formation is a partial skull of the oreodont Merycoidodon presidioensis that includes both maxillae. The fossil mammals from the Palm Park Formation indicate an early Chadronian age of ~36-37 Ma. They can be correlated to the Chadronian mammals from the Rubio Peak Formation in the Black Range of Sierra County. The total age range of the Palm Park Formation is likely ~36-38 Ma.

INTRODUCTION

Fossil mammals of Eocene age are known from various localities in New Mexico in the synorogenic deposits of the Laramide orogeny (Lucas et al., 1981; Lucas and Williamson, 1993; Lucas, 2001). These mammals well represent the Wasatchian and Duchesnean land-mammal “ages” (LMAs) and less extensively document the Bridgerian and Uintan LMAs. Fossil mammals of the Chadronian LMA, the youngest Eocene LMA, are also known from the volcanoclastic deposits that formed around the stratovolcanoes that preceded the ashflow tuff/caldera-collapse volcanism of the Oligocene. Lucas (1986a, b), Lucas and Williamson (1993) and Lucas et al. (1997) have documented some of these Chadronian mammals, which are from the Rubio Peak and Palm Park formations in Sierra County. Here, we provide detailed documentation of the Chadronian fossil mammals from the Palm Park Formation in the Apache Valley of the southern Caballo Mountains in Sierra County (Fig. 1). This augments earlier, preliminary reports on these fossil mammals by Lucas and Williamson (1993) and Lucas et al. (1997). In this article, NMMNH refers to the New Mexico Museum of Natural History and Science, Albuquerque.

GEOLOGICAL CONTEXT

Beginning with the first discovery in 1992, we have intermittently collected fossil vertebrates from the Palm Park Formation in the Apache Valley for nearly 20 years. Currently, 12 NMMNH fossil vertebrate localities have been identified in these strata, which are located in T16S, R4W (Table 1). The vertebrate-fossil-bearing interval in the Palm Park Formation is about 54 m thick, and its top is ~103 m below the contact of the Palm Park Formation with the overlying rhyolite tuff at the base of the Bell Top Formation (Fig. 1). Seager and Mack (2003) estimated the total thickness of the Palm Park Formation in the Caballo Mountains as ~630 m, so the fossil mammal localities are in the upper part of the formation.
PALEONTOLOGY

Reptilia

Testudines

At least two taxa of turtles are present at the Palm Park Formation localities in the southern Caballo Mountains. Most abundant are shell fragments and isolated limb and vertebral bones (NMMNH P-21360, P-26479, P-26480, P-26485, P-26487, P-26488, P-26492, P-26498) of a tortoise that Lucas and Williamson (1993) identified as aff. *Stylemys* sp. Also present are shell fragments of an emydid (NMMNH P-31533: H. Hutchison, written commun., 2000). This material merits further study.

Mammalia

Hyaenodon horridus

NMMNH P-21361 from locality 2633 is a right maxillary fragment with m2 (fig. 2a-c) that Lucas and Williamson (1993, fig. 13C-D) illustrated and identified as *Hyaenodon horridus*. The lack of m3 and extreme development of the carnassial are characteristic of *Hyaenodon*. Its relatively large size (m2: length = 22.5 mm, width = 13.8 mm) supports assignment to *H. horridus*, an early Chadronian-Orellan species (Mellett, 1977).

Mesohippus cf. M. texanus

NMMNH P-26500 from locality 3455 is a right dentary fragment with roots of p2-3 and complete p4-m1 (fig. 2j-l). Lucas et al. (1997) described and illustrated this specimen, identifying it as *Mesohippus cf. M. texanus*. We accept this tentative assignment to the small, Duchesnean-early Chadronian species of *Mesohippus* (cf. McGrew, 1971; Prothero and Shubin, 1989).

Merycoidodon presidioensis

Lucas and Williamson (1993, fig. 13J-M) illustrated NMMNH P-21366, edentulous dentary fragments of an artiodactyl, but this specimen cannot be more precisely identified. At NMMNH locality 3455 we recently discovered NMMNH P-65179, which consists of a partial skull of an oreodont that includes the right P4-M3, left C-M3 (C-M1 are very damaged) (fig. 2m-o) and some associated limb bone fragments. The teeth have derived features (note lack of P4 hypocone, lack of lingual cingula on molars), and the skull has diagnostic features (infraorbital foramen over P2, no facial vacuities) that preclude assignment to the genera *Aclistomyater*, *Oreonetes*, *Bathygenys*, *Miniochoerus* or *Limnetes* (cf. Lander, 1998; Stevens and Stevens, 1996, 2007). Closest resemblance is to *Merycoidodon presidioensis* of Stevens and Stevens (1996), which is also called *Prodesmatochoerus meekae* by Schultz and Falkenbach (1954), Wilson (1971) and Lander (1998).

Key features that justify this identification are size, relatively thick enamel on the cheek teeth, M1-M3 protocone completely selenodont, and protoselene extends towards the mesostyle approximately parallel to, but separated from the anterior crest of the metaconule by a transverse valley; P1-P4 length ~50% of P1-M3 length; M3 length/width = 1.79; and M3 width/height = 1.9 (cf. Stevens and Stevens, 1996; Lander, 1998). The Palm Park oreodont particularly closely resembles a specimen from the early Chadronian Airstrip local fauna of West Texas that Wilson (1971, fig. 3Q) identified as ?*Prodesmatochoerus cf. P. meekae*,

<table>
<thead>
<tr>
<th>NMMNH locality</th>
<th>Vertebrate Taxa</th>
<th>Specimen Descriptions</th>
</tr>
</thead>
<tbody>
<tr>
<td>2632</td>
<td>Hyaenodontidae</td>
<td>dentary fragments</td>
</tr>
<tr>
<td>2633</td>
<td>Hyaenodon</td>
<td>maxillary fragments</td>
</tr>
<tr>
<td>3454</td>
<td>Testudines</td>
<td>(4) long bone fragments</td>
</tr>
<tr>
<td>3455</td>
<td>Merycoidodon presidioensis</td>
<td>single jaw fragment m1-m2 partial skull and postcrania</td>
</tr>
<tr>
<td>3456</td>
<td>Testudines</td>
<td>shell fragments</td>
</tr>
<tr>
<td>3457</td>
<td>Testudines</td>
<td>(4) bone fragments</td>
</tr>
<tr>
<td>3458</td>
<td>Mammalia</td>
<td>(2) long bone fragments</td>
</tr>
<tr>
<td>3459</td>
<td>Mammalia</td>
<td>(1) rib fragment; (1) bone fragment</td>
</tr>
<tr>
<td>3460</td>
<td>Mammalia</td>
<td>(numerous) bone fragments</td>
</tr>
<tr>
<td>3461</td>
<td>Testudines</td>
<td>(numerous) shell fragments</td>
</tr>
<tr>
<td>3462</td>
<td>Mammalia</td>
<td>(numerous) bone fragments; tooth enamel of large mammal</td>
</tr>
<tr>
<td>3463</td>
<td>Testudines</td>
<td>shell and vertebral fragments</td>
</tr>
<tr>
<td></td>
<td>Mammalia</td>
<td>long bone fragments</td>
</tr>
</tbody>
</table>

TABLE 1. Complete list of vertebrate fossil localities from the Palm Park Formation, southern Caballo Mountains, Sierra County, NM, with taxa and specimen descriptions.
and that is the holotype of *Merycoidodon presidioensis* (Stevens and Stevens, 1996, p. 515).

Metrics of the maxillary teeth, in mm (* estimated measurement due to damage to the tooth): Right: P1, length = 10.0*; P2, length = 9.2*, width = 5.6*; P3, length = 10.4*, width = 10.6*; P4, length = 8.3*, width = 12.1; M1, length = 11.4, width = 13.6; M2, length = 15.3, width = 17.1; M3, length = 17.2, width = 18.3; Left: P1-4, length = 3.8*, M1-3, length = 4.2.

DISCUSSION

Lucas and Williamson (1993, p. 150-151, figs. 11-13) first documented some of the Chadronian fossil vertebrates from the upper part of the Palm Park Formation in the Apache Valley of the southern Caballo Mountains. They identified tortoise fossils plus the hyaenodontid creodont *Hyaenodon horridus* and the rhinoceros cf. *Hyracodon* sp. Lucas et al. (1997) added the horse *Mesohippus* cf. *M. texanus*, and we add the oreodont *Merycoidodon presidioensis* to the Palm Park fossil assemblage. The temporal ranges of these mammals overlap only in the early Chadronian, and they are most readily correlated to the Airstrip local fauna of West Texas, which is ~36 Ma, late early Chadronian *sensu* Prothero and Emry (2004). Within biochronological resolution, they are the same age as the Chadronian mammals from the Rubio Peak Formation in the Black Range reported by Lucas (1986a, b). The Palm Park fossil mammals are early Chadronian, ~36-37 Ma (Fig. 3).

The oldest radioisotopic age of tuffs in the Bell Top Formation, which overlies the Palm Park Formation, is ~35.8 Ma (Chapin et al., 2004). An early Chadronian age of about 36-37 Ma for the fossil mammals from the upper part of the Palm Park Formation is consistent with the Bell Top Formation being no older than ~36 Ma. Older K/Ar ages of 42, 43 and 51 Ma have been reported from the Palm Park Formation (Seager et al., 1975, table 1), but these appear to be too old, though the oldest age of the Palm Park Formation is not certain. However, it is likely to be no older than the lithologically very similar Rubio Peak Formation, which is in the same stratigraphic interval as the Palm Park Formation. The Rubio Peak Formation has been radioisotopically dated at no older than ~38 Ma (Chapin et al., 2004) and has yielded early Chadronian fossil mammals and a fossil of the Duchesnian brontothere *Duchesneodus* (Lucas, 1983, 1986a, b). Therefore, we conclude that the Palm Park and Rubio Peak formations are of late Duchesnean-early Chadronian age, ~38-36 Ma, based on existing radioisotopic ages and mammalian biochronology (Fig. 3).

ACKNOWLEDGMENTS

Pete Reser and Karl Krainer provided field assistance. We thank Robert Emry, Gary Morgan and Donald Prothero for helpful reviews that improved the manuscript.

REFERENCES

Arctiodactyl hoof print molds in bedded ash-fall-tuff in the San Mateo Mountains in Socorro County New Mexico, July 1983. NMBGMR Photo Archive No. p-01234