Gabbroic shallow intrusions and lava-hosted xenoliths in the Mount Taylor area, New Mexico

This is one of many related papers that were included in the 2013 NMGS Fall Field Conference Guidebook.

Annual NMGS Fall Field Conference Guidebooks

Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico.

Free Downloads

NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. Non-members will have access to guidebook papers two years after publication. Members have access to all papers. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, maps, stratigraphic charts, and other selected content are available only in the printed guidebooks.

Copyright Information

Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. No material from the NMGS website, or printed and electronic publications, may be reprinted or redistributed without NMGS permission. Contact us for permission to reprint portions of any of our publications.

One printed copy of any materials from the NMGS website or our print and electronic publications may be made for individual use without our permission. Teachers and students may make unlimited copies for educational use. Any other use of these materials requires explicit permission.
This page is intentionally left blank to maintain order of facing pages.
INTRODUCTION

Mount Taylor is an extinct composite stratovolcano that was active from about 3.3 to 2.5 Ma, located roughly 20 km NE of Grants (Fig. 1; Perry et al., 1990; Goff et al., 2010b). Mount Taylor is located near the SE margin of the Colorado Plateau and 60 km west of the north-trending Rio Grande rift. It is one of many Miocene to Quaternary volcanic complexes that comprises the northeast-trending Jemez volcanic lineament (Aldrich and Laughlin, 1984). The volcano (summit elevation 3445 m or 11,300 ft.) is composed primarily of alkali rhyolite to trachyandesite lava flows and subordinate tuffs surrounded by several mesas capped by alkali basalt, trachybasalt (hawaiite) and minor basanite ranging in age from 3.7 to 1.25 Ma (Fig. 2). The geochemistry and age of Mount Taylor and Grants Ridge volcanic products have been investigated in numerous reports (Baker and Ridley, 1970; Lipman and Moench, 1972; Crumpler, 1982; Perry et al., 1990; Shackley, 1998; Goff et al., 2010b). Wilson (1989) noted that Mount Taylor represents a prime example of an intraplate alkalic stratovolcano. Alternatively, western North America has been described as a broad extensional plate-boundary zone. Within this plate boundary zone, the Colorado Plateau may be viewed as a rafting microplate, with the Mount Taylor stratovolcano located on its weakly extended margin.

Hunt (1938) produced the first geologic map of the region and pointed out the spatial association between the Mount Taylor stratovolcano and surrounding mafic lavas and cinder cones. Sears et al. (1941) described transgressive-regressive depositional relations in Upper Cretaceous sedimentary rocks beneath Mount Taylor. Geologic mapping of 1:24,000 quadrangles began in the 1960s, mainly supporting the regional uranium boom (e.g., Moench, 1963; Moench and Schlee, 1967; Lipman et al., 1979). Crumpler (1980a, 1980b) mapped a portion of Mesa Chivato several kilometers north of Mount Taylor and analyzed many of the lavas, cones and domes on the mesa. Crumpler (1982, Fig. 4) also published a geologic sketch map of the summit of Mount Taylor. Perry et al. (1990) published a more detailed geologic map of the summit and southwest flank of the

FIGURE 1. Map showing location of Mount Taylor with respect to other volcanic features of the Jemez Lineament and to basins of the Rio Grande rift (EB = Espanola Basin).
volcanic complex. Recent 1:24,000 scale geologic mapping (Goff et al., 2008, 2010a and in progress; McCraw et al., 2009; Osburn et al., 2009; Skotnicki et al., 2012) subdivides most of the volcanic units and forms a basis for revived volcanic and geochronologic studies of the Mount Taylor region (Goff et al., 2010b). The object of this paper is to describe the geology and geochemistry of recently recognized shallow, fine- to medium-grained gabbro intrusions, compare them to other alkali basalt-gabbro associations elsewhere in the world, and speculate on their geologic significance in creating small structural uplifts in the Mount Taylor volcano area.

GEOLOGY AND PETROGRAPHY OF GABBROS

As of this date gabbroic rocks in the Mount Taylor area are found as fine-to medium-grained, eroded plugs (volcanic necks?), as lenticular sill-like bodies, as ≤0.5 m long blocks in a single scoria cone, and as medium- to coarse-grained xenoliths in basaltic lavas and associated tephra (Fig. 2 and Table 1). All gabbroic rocks described in this paper are phaneritic and holocrystalline (AGI, 2005). Our textural criteria are: fine-grained (< 1mm), medium-grained (1- 5 mm), and coarse-grained (5-30 mm).

Plug Southeast of Horace Mesa

A 300 m diameter plug of fine-grained gabbro intrudes Cretaceous rocks on the SE margin of Horace Mesa (site 1, Fig. 2; Goff et al., 2008). The crest of plug is distinguished on the topographic map by an elevation of 7815 feet, and informally referred to as “Peak 7815.” Inspection of the gabbro shows it is equigranular containing plagioclase, oxidized olivine, augite and opaque oxides. A ≤3 m wide dike of trachybasalt extends several hundred meters north from the plug. Although basaltic lava flows and eroded scoria cones occur on Horace Mesa adjacent to the plug, the petrography of the gabbro (fine-grained, holocrystalline) is different from these units (aphanitic, olivine porphyritic) (Goff et al., 2008).

Bombs in Eroded Scoria Cone South of Mount Taylor

An eroded scoria cone of porphyritic pyroxene-bearing trachybasalt located 10 km SSW of Mount Taylor (site 2, Fig. 2) contains abundant blocks of medium-grained gabbro up to 0.5 m long (Goff et al., 2008). Some blocks and smaller fragments are completely encased by vesicular trachybasalt while others are not. The gabbro displays slightly porphyritic, equigranular texture and consists of plagioclase, oxidized olivine, augite, and opaque oxides. Trachybasalt lava originating from the cone reveals different petrography containing conspicuous megacrysts of black augite and phenocrysts of olivine and plagioclase in a black glassy groundmass. Plagioclase from a large gabbro fragment is moderately well dated by 40Ar/39Ar at 3.10 ± 0.24 Ma whereas the host trachybasalt is more precisely dated at 2.78 ± 0.03 Ma. Thus, field observations and age data suggest that the trachybasalt magma disrupted a pre-existing gabbro intrusion at depth and the gabbro fragments were not heated for a long enough time to noticeably reset their radiometric age.

Gabbro Plug in Mount Taylor Amphitheater

A 0.5 km diameter, circular body of fine-grained gabbro (0.65 mm plagioclase) intrudes, from oldest to youngest, basanite, altered rhyolite, trachybasalt and volcaniclastic sediments to the
TABLE 1. Locations (UTM NAD 27), Ar/Ar ages and petrography (vol-%) of gabbro and selected gabbroic xenoliths in the Mount Taylor region, New Mexico.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Location, Site, Fig. 2</th>
<th>Type</th>
<th>Field Name</th>
<th>Nortthing</th>
<th>Easting</th>
<th>Age, Ma1</th>
<th>Ave grn (mm)2</th>
<th>Phenos (mm)3</th>
<th>Points</th>
<th>Plagioclase</th>
<th>Clinopyroxene</th>
<th>Orthopyroxene</th>
<th>Olivine</th>
<th>Iron ore</th>
<th>Iddingsite4</th>
</tr>
</thead>
<tbody>
<tr>
<td>07SK-L5</td>
<td>SE Horace Mesa</td>
<td>Gabbro plug</td>
<td>Olivine gabbro</td>
<td>3892941</td>
<td>268077</td>
<td>3.0 ± 0.07</td>
<td>0.55 x 0.1</td>
<td><1% (1.0 x 0.25)</td>
<td>500</td>
<td>59</td>
<td>12</td>
<td>13</td>
<td>14</td>
<td>9</td>
<td>8</td>
</tr>
<tr>
<td>F07-74</td>
<td>South Mt. Taylor</td>
<td>Gabbro block</td>
<td>Olivine gabbro</td>
<td>389355</td>
<td>267811</td>
<td>3.26 ± 0.31</td>
<td>1.25 x 0.18</td>
<td>7% (≤7 x 2.5)</td>
<td>500</td>
<td>57</td>
<td>8</td>
<td>0</td>
<td>15</td>
<td>13</td>
<td>13</td>
</tr>
<tr>
<td>F08-43</td>
<td>Amphitheater</td>
<td>Gabbro plug</td>
<td>Olivine gabbro</td>
<td>3901456</td>
<td>267302</td>
<td>2.68 ± 0.07</td>
<td>0.65 x 0.1</td>
<td>2% (≤1.4 x 0.9)</td>
<td>500</td>
<td>55</td>
<td>22</td>
<td>0</td>
<td>16</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>F09-25</td>
<td>NE Mt Taylor</td>
<td>Gabbro ledge</td>
<td>Olivine gabbro</td>
<td>3907843</td>
<td>269383</td>
<td>1.74 ± 0.03</td>
<td>0.9 x 0.15</td>
<td>None (ophitic)</td>
<td>500</td>
<td>57</td>
<td>16</td>
<td>0</td>
<td>14</td>
<td>15</td>
<td>9</td>
</tr>
<tr>
<td>F12-32</td>
<td>SW Mesa Chivato</td>
<td>Gabbro plug (?)</td>
<td>Olivine gabbro</td>
<td>3907712</td>
<td>276048</td>
<td>1.74 ± 0.03</td>
<td>1.0 x 0.13</td>
<td>5% (5.5 x 2.6)</td>
<td>100</td>
<td>81</td>
<td>14</td>
<td>0</td>
<td>13</td>
<td>15</td>
<td>12</td>
</tr>
<tr>
<td>F12A-32</td>
<td>West Flank</td>
<td>Gabbro xeno</td>
<td>Olivine gabbro</td>
<td>3906408</td>
<td>258149</td>
<td>2.30 ± 0.13</td>
<td>≤10 x 2 plag</td>
<td>≤6.3 x 1.5 plag</td>
<td>100</td>
<td>62</td>
<td>2</td>
<td>0.031</td>
<td>>3 x 3 plag</td>
<td>13</td>
<td>12</td>
</tr>
<tr>
<td>F12-32</td>
<td>West Flank</td>
<td>Norite5</td>
<td>Olivine gabbro</td>
<td>3906243</td>
<td>258372</td>
<td>1.79 ± 0.04</td>
<td>≤3.3 x 3 plag</td>
<td>≤6.3 x 5.5 plag</td>
<td>100</td>
<td>60</td>
<td>2</td>
<td>0.041</td>
<td>≤2.5 x 2 plag</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>F07-70G</td>
<td>N Mt Taylor</td>
<td>Gabbro xeno</td>
<td>Troctolite6</td>
<td>391178</td>
<td>26792</td>
<td>2.30 ± 0.13</td>
<td>1.8 plag</td>
<td>≤6.3 x 5.5 plag</td>
<td>100</td>
<td>64</td>
<td>2</td>
<td>0.131</td>
<td>≤3.3 x 3 plag</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>F08-90</td>
<td>NW Flank</td>
<td>Gabbro xeno</td>
<td>Pyroxenite</td>
<td>3906473</td>
<td>263879</td>
<td>1.79 ± 0.04</td>
<td>≤3.3 x 3 plag</td>
<td>≤6.3 x 5.5 plag</td>
<td>100</td>
<td>60</td>
<td>2</td>
<td>0.041</td>
<td>≤2.5 x 2 plag</td>
<td>12</td>
<td>12</td>
</tr>
<tr>
<td>F10-06</td>
<td>Mesa Chivato</td>
<td>Gabbro xeno</td>
<td>Webstersite7</td>
<td>3916914</td>
<td>274892</td>
<td>2.30 ± 0.13</td>
<td>1.8 plag</td>
<td>≤6.3 x 5.5 plag</td>
<td>100</td>
<td>64</td>
<td>2</td>
<td>0.131</td>
<td>≤3.3 x 3 plag</td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>F12-24</td>
<td>Mesa Chivato</td>
<td>Gabbro xeno</td>
<td>Webstersite7</td>
<td>3916914</td>
<td>274892</td>
<td>2.30 ± 0.13</td>
<td>1.8 plag</td>
<td>≤6.3 x 5.5 plag</td>
<td>100</td>
<td>64</td>
<td>2</td>
<td>0.131</td>
<td>≤3.3 x 3 plag</td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>

1 Age of xenolith is age of enclosing basalt if known.
2 Average grain size = average dimension of plagioclase laths unless otherwise stated; plag = plagioclase and opx = orthopyroxene.
3 Phenocryst content and average or maximum size.
4 Value is amount of olivine that is iddingsite.
5 Norite = a gabbro in which pl/(pl+px+ol) is between 10 and 90% and opx/(opx+cpx) is greater than 95%.
6 Troctolite = a gabbro that is chiefly labradorite and olivine with little or no pyroxene.
7 Webstersite = a pyroxenite containing mostly clinopyroxene, subordinate orthopyroxene and <5% olivine.

nd = not determined; na = not applicable.

Gabbro Intrusion Northeast of Mount Taylor

A poorly exposed lens-shaped ledge of gabbro lies beneath an eroded scoria cone in a small faulted basin northeast of Mount Taylor (site 4, Fig. 2; Goff et al., 2010a). From available exposures, it is not entirely clear if the gabbro intrudes into the cone, or if it is older. The gabbro is well dated at 2.68 ± 0.07 Ma and the overlying trachybasalt from the cone is dated at 2.37 ± 0.14 Ma. The non-overlapping age data imply that the lava unconformably buried the gabbro, but similar chemical compositions (discussed later) suggest that the gabbro and lava may be comagmatic. The gabbro is fine-grained (0.9 mm plagioclase), equigranular and ophitic containing interlocking crystals of plagioclase, augite, relatively fresh olivine and opaque oxides (Fig. 4a). The trachybasalt has small plagioclase phenocrysts in a groundmass of felty plagioclase, augite, olivine, opaque oxides and abundant glass.

Gabbro Intrusion in Southern Mesa Chivato

Another eroded gabbro intrusion is exposed in an unnamed ravine between a complex of scoria cones, flows and dikes in southern Mesa Chivato (site 5, Fig. 2; Goff et al., in progress). The gabbro underlies the above-mentioned units but as of yet, no units are dated. The gabbro does not appear to be petrographically related to the overlying units, although that observation...
needs further scrutiny. The gabbro is medium-grained (1.0 mm plagioclase), equigranular and slightly porphyritic, and consists of plagioclase, fresh olivine, augite and opaque oxides.

The five gabbros described above all classify as olivine-augite gabbro (Table 1). Olivine is conspicuous but iddingsite alteration varies. Except for the gabbro plug in the amphitheater, four of the five contain >50% modal plagioclase and none contain orthopyroxene. All textures are equigranular, fine- to medium-grained (Fig. 4A). Some are slightly porphyritic and one is distinctly ophitic.

Gabbroic Xenoliths in Trachybasalt Lavas

Many of the coeval mafic lavas that surround Mount Taylor stratovolcano contain a variety of ultramafic, mafic, and metamorphic xenoliths. Some also contain large plagioclase and augite megacrysts (i.e., large crystals with rounded and reacted margins). Table 1 (sites 6-10, Fig. 2) presents data on six medium- to coarse-grained gabbro xenoliths from four of these lavas. The peridotite-bearing trachybasalt from the west flank of Mount Taylor (1.74 ± 0.03 Ma) is the subject of another paper in this volume (Goff and Goff, this volume). This lava also contains xenoliths of gabbro, metamorphosed sandstone, etc. as well as megacrysts of augite and plagioclase, clots of olivine (which appear to be disaggregated peridotite), and xenocrysts of quartz (Baldridge et al., 1996; McCraw et al., 2009; Goff et al., 2010a). Gabbro xenoliths are ≤8 cm in diameter with most ≤2 cm. They consist of coarse-grained, equigranular to slightly banded norite (Fig. 4b), some very plagioclase-rich, and contain plagioclase, hypersthene, and opaque oxides (Table 1, samples F94-MT4B and F07-70G).

Similar petrographic distinctions are displayed by gabbroic xenoliths from three other trachybasalt lavas highlighted in this paper. One of the flows is found north of Mount Taylor (site 8, Fig. 2). All xenoliths in this flow (2.30 ± 0.13 Ma) appear to be medium- to coarse-grained, equigranular gabbro but some are olivine-rich (sample F08-90). Another flow (1.79 ± 0.04 Ma) lies on the NW flank of Mount Taylor and includes a wide variety of xenoliths (site 9). The gabbro we chose for study (F10-06) is rich in apple-green chrome diopside and hypersthene, having a medium-grained, slightly banded texture. Yet another flow located in southern Mesa Chivato (site 10, F12-24, undated) also contains a wide variety of xenoliths including gabbro. Of those, some are coarse-grained hypersthene and plagioclase-rich (norite) while others are medium-grained, plagioclase-poor and extremely clinopyroxene-rich (websterite). We have not attempted to date any of the xenoliths but assume they originate from previously crystallized materials at depth.

Gabbroic xenoliths found in lavas around Mount Taylor are completely different from the gabbroic intrusive rocks previously described (Table 1). Mineral compositions vary widely but most xenoliths are predominately norite (hypersthene gabbro). Some contain considerable olivine while others contain none. Texturally, the gabbroic xenoliths are much coarser-grained (Fig. 4B) and some are weakly banded.

FIGURE 4A. Photomicrographs of gabbro and gabbro xenolith, field of view = 5 mm. A. Gabbro intrusive F09-25 showing equigranular, slightly ophitic texture of white plagioclase, dark gray augite, light gray olivine, and black opaque oxides.

FIGURE 4B. Medium-grained pyroxenite xenolith (F10-06) of pale gray clinopyroxene (visually identified as chrome diopside), dark gray hypersthene, much of which is oxidized to black color, and tiny black granules of chrome spinel. A small amount of intergranular olivine is also present.
Other Gabbros and Trachybasalts

For comparison, we collected a sample from a 0.5 m long block of gabbro enclosed by vesicular porphyritic lava during a recent trip to the Island of Stromboli (Italy). The sample is located on the NW side of the island on the NE edge of the Sciara del Fuoco escarpment. The gabbro is coarse-grained having interlocking crystals of pale gray plagioclase, dark green augite, olivine, biotite, opaque oxides, apatite, and possibly some tiny interstitial Kspar. The enclosing lava contains phenocrysts of plagioclase, augite, and olivine in a groundmass of small plagioclase, augite, Fe-Ti oxides and glass. These materials are from the Upper Vancori period of Stromboli development (roughly 13.8 ka; Cortés et al., 2005).

We also include, for comparison, data from two alkali-rich basaltic sites we recently visited, which are known to contain mafic and/or ultramafic xenoliths: Colton crater (Crater 160) from the San Francisco volcanic field in Arizona (Cummings, 1972; Van Kooten and Buseck, 1978) and Mauna Kea volcano on the Big Island, Hawaii (Wolfe et al., 1997; Fodor and Galar, 1997). Colton crater is a complex maar volcano with a broad, open crater exposing interesting stratigraphy in the crater wall and a small cinder cone preserved on the crater floor. The volcanic rocks associated with the xenoliths (cinder beds, flows, palagonite tuffs and dikes) are alkali basalt bordering on trachybasalt (Van Kooten and Buseck, 1978). The mafic xenoliths consist of dunite, websterite, gabbro and norite (Cummings, 1972).

The summit of Mauna Kea, Hawaii is covered with several large scoria cones and flows of trachybasalt (hawaiite) composition (Wolfe et al., 1997). Many of these rocks contain relatively coarse-grained mafic and ultramafic xenoliths of peridotite, dunite, norite and gabbro (Fodor and Galar, 1997). The trachybasalts are primarily part of the Laupahoeohoe volcanics, the culminating sequence of post-shield volcanism at Mauna Kea (Wolfe et al., 1997). Most of these trachybasalts are very fine-grained and dense but in appropriate light, they display a fealty sheen of tiny aligned plagioclase crystals.

CHEMISTRY OF GABBROS

Chemical analyses, total alkali contents and Mg numbers of gabbros, gabbro xenoliths, and associated lavas from Mount Taylor, Stromboli, Colton crater and Mauna Kea are listed in Table 2. Because of their high total alkali contents relative to silica, the four Mount Taylor shallow gabbro intrusives and gabbro block from the scoria cone range from gabbro through monzogabbro to monzodiorite/monzonite using the classification scheme of Cox et al. (1979; Fig. 5). Stromboli biotite-olivine-augite gabbro plots on the same trend, although it has higher K2O, and is classified as monzogabbro. In contrast, all gabbro xenoliths found in basaltic lavas including those from Mount Taylor are chemically different and are classified as gabbro to gabbrodiorite. Except for a sample of norite from Colton crater, gabbroic xenoliths have exceptionally low total alkali contents.

Several mafic lavas from Mount Taylor chemically resemble the compositions of Mount Taylor shallow gabbros (Table 2). The former classify as alkali-rich basalt through trachybasalt (hawaiite) to basaltic trachyandesite on a plot showing total alkalis versus silica in volcanic rocks (le Bas et al., 1986). Most Mount Taylor mafic rocks are trachybasalt; few are basaltic trachyandesite (Goff et al., 2008). The small, fine-grained gabbroic plug SE of Horace Mesa (“Peak 7815,” sample 07SK-LS5) is classified as a monzodiorite, but otherwise it is chemically very similar to a basaltic trachyandesite lava (sample F07-17) located several kilometers north on Horace Mesa. Another chemically similar pair of rocks comprises the gabbro intrusive (F09-25) and the overlying scoria cone lava (F09-23) north of Mount Taylor. This chemical similarity suggests that the gabbro and overlying lava may be comagmatic or co-genetic, but relatively precise age determinations more rigorously (?) support the interpretation that the gabbro and lava represent different pulses of basaltic magma with different crystallization histories. In contrast, the monzogabbro bomb (F07-74) found in the scoria cone south of Mount Taylor is quite distinct chemically from the porphyritic trachybasalt (F07-61) vented from the cone. The difference in chemistry provides further evidence that the younger trachybasalt erupted through a shallow pre-existing.
TABLE 2. Major element analyses of gabbros, gabbroic xenoliths and associated mafic rocks from Mount Taylor area, NM, Colton Crater, AZ, Mauna Kea, HI and Stromboli, Italy. Locations are in UTM coordinates, NAD 27 where known.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Location</th>
<th>Northing</th>
<th>Easting</th>
<th>Type</th>
<th>Geochem Name</th>
<th>Major elements (wt-%)</th>
<th>Normalized total</th>
<th>Total alkalis</th>
<th>Mg#, %</th>
<th>Data Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>07SK-L5</td>
<td>SE Horace Mesa</td>
<td>3892841</td>
<td>256725</td>
<td>Gabbro plug</td>
<td>Monzodiorite</td>
<td>SiO₂ 53.2</td>
<td>99.94</td>
<td>7.09</td>
<td>35.3</td>
<td>ALS</td>
</tr>
<tr>
<td>F07-17</td>
<td>S Mt Taylor</td>
<td>3901870</td>
<td>257931</td>
<td>Trachybasalt</td>
<td>BTrachyandesite</td>
<td>TiO₂ 2.39</td>
<td>100.04</td>
<td>6.82</td>
<td>2.07</td>
<td>F11</td>
</tr>
<tr>
<td>F07-74</td>
<td>S Mt Taylor</td>
<td>389355</td>
<td>26889</td>
<td>Gabbro block</td>
<td>Monzo-gabbro</td>
<td>Al₂O₃ 16.7</td>
<td>100.06</td>
<td>8.76</td>
<td>15.8</td>
<td>ALS</td>
</tr>
<tr>
<td>F07-61</td>
<td>N Mt Taylor</td>
<td>3892388</td>
<td>260623</td>
<td>Gabbro plug</td>
<td>Monzo-gabbro</td>
<td>FeO* 10.4</td>
<td>100.03</td>
<td>8.73</td>
<td>15.6</td>
<td>F11</td>
</tr>
<tr>
<td>F08-43</td>
<td>Amphitheater</td>
<td>3901456</td>
<td>267302</td>
<td>Gabbro plug</td>
<td>Monzo-gabbro</td>
<td>MnO 0.20</td>
<td>100.06</td>
<td>8.76</td>
<td>15.8</td>
<td>F11</td>
</tr>
<tr>
<td>F08-90</td>
<td>NE Mt Taylor</td>
<td>391178</td>
<td>26792</td>
<td>Trachybasalt</td>
<td>Monzo-gabbro</td>
<td>MgO 3.18</td>
<td>100.04</td>
<td>8.76</td>
<td>15.8</td>
<td>F11</td>
</tr>
<tr>
<td>F09-25</td>
<td>NE Mt Taylor</td>
<td>3907843</td>
<td>269383</td>
<td>Gabbro plug</td>
<td>Monzo-gabbro</td>
<td>CaO 5.79</td>
<td>100.04</td>
<td>8.76</td>
<td>15.8</td>
<td>ALS</td>
</tr>
<tr>
<td>F09-23</td>
<td>NE Mt Taylor</td>
<td>3907720</td>
<td>268705</td>
<td>Gabbro plug</td>
<td>Monzo-gabbro</td>
<td>Na₂O 4.99</td>
<td>100.03</td>
<td>8.71</td>
<td>15.4</td>
<td>F11</td>
</tr>
<tr>
<td>F12-32</td>
<td>Mesa Chivato</td>
<td>3916914</td>
<td>274892</td>
<td>Trachybasalt</td>
<td>BTrachyandesite</td>
<td>K₂O 2.10</td>
<td>100.04</td>
<td>8.76</td>
<td>15.8</td>
<td>F11</td>
</tr>
<tr>
<td>F12-24</td>
<td>Mesa Chivato</td>
<td>na</td>
<td>na</td>
<td>Gabbro block</td>
<td>Monzo-gabbro</td>
<td>P₂O₅ 0.99</td>
<td>100.03</td>
<td>8.76</td>
<td>15.8</td>
<td>F11</td>
</tr>
<tr>
<td>F12-55</td>
<td>Stromboli</td>
<td>3906243</td>
<td>258372</td>
<td>Trachybasalt</td>
<td>Monzo-gabbro</td>
<td>Normalized total</td>
<td>99.94</td>
<td>100.04</td>
<td>99.96</td>
<td>ALS</td>
</tr>
<tr>
<td>F12-56</td>
<td>Stromboli</td>
<td>3906473</td>
<td>258372</td>
<td>Gabbro block</td>
<td>Monzo-gabbro</td>
<td>Total alkalies</td>
<td>7.09</td>
<td>100.03</td>
<td>99.96</td>
<td>F11</td>
</tr>
<tr>
<td>F07-70</td>
<td>West Flank</td>
<td>na</td>
<td>na</td>
<td>Gabbro block</td>
<td>Monzo-gabbro</td>
<td>Mg#, %</td>
<td>35.3</td>
<td>100.03</td>
<td>99.96</td>
<td>F11</td>
</tr>
<tr>
<td>F07-70G</td>
<td>West Flank</td>
<td>na</td>
<td>na</td>
<td>Gabbro plug</td>
<td>Monzo-gabbro</td>
<td>Mg#, %</td>
<td>35.3</td>
<td>100.03</td>
<td>99.96</td>
<td>F11</td>
</tr>
<tr>
<td>F07-90G</td>
<td>NW Flank</td>
<td>na</td>
<td>na</td>
<td>Gabbro plug</td>
<td>Monzo-gabbro</td>
<td>Mg#, %</td>
<td>35.3</td>
<td>100.03</td>
<td>99.96</td>
<td>F11</td>
</tr>
<tr>
<td>F09-23</td>
<td>Colton</td>
<td>na</td>
<td>na</td>
<td>Gabbro block</td>
<td>Monzo-gabbro</td>
<td>Mg#, %</td>
<td>35.3</td>
<td>100.03</td>
<td>99.96</td>
<td>F11</td>
</tr>
<tr>
<td>F12-24</td>
<td>Colton</td>
<td>na</td>
<td>na</td>
<td>Gabbro block</td>
<td>Monzo-gabbro</td>
<td>Mg#, %</td>
<td>35.3</td>
<td>100.03</td>
<td>99.96</td>
<td>F11</td>
</tr>
<tr>
<td>F12-55</td>
<td>Mauna Kea</td>
<td>na</td>
<td>na</td>
<td>Gabbro block</td>
<td>Monzo-gabbro</td>
<td>Mg#, %</td>
<td>35.3</td>
<td>100.03</td>
<td>99.96</td>
<td>F11</td>
</tr>
<tr>
<td>F12-56</td>
<td>Mauna Kea</td>
<td>na</td>
<td>na</td>
<td>Gabbro block</td>
<td>Monzo-gabbro</td>
<td>Mg#, %</td>
<td>35.3</td>
<td>100.03</td>
<td>99.96</td>
<td>F11</td>
</tr>
<tr>
<td>F07-90G</td>
<td>Stromboli</td>
<td>na</td>
<td>na</td>
<td>Gabbro block</td>
<td>Monzo-gabbro</td>
<td>Mg#, %</td>
<td>35.3</td>
<td>100.03</td>
<td>99.96</td>
<td>F11</td>
</tr>
<tr>
<td>F07-70G</td>
<td>Stromboli</td>
<td>na</td>
<td>na</td>
<td>Gabbro block</td>
<td>Monzo-gabbro</td>
<td>Mg#, %</td>
<td>35.3</td>
<td>100.03</td>
<td>99.96</td>
<td>F11</td>
</tr>
<tr>
<td>F09-23</td>
<td>Stromboli</td>
<td>na</td>
<td>na</td>
<td>Gabbro block</td>
<td>Monzo-gabbro</td>
<td>Mg#, %</td>
<td>35.3</td>
<td>100.03</td>
<td>99.96</td>
<td>F11</td>
</tr>
</tbody>
</table>

1 FeO* = all Fe recalculated as FeO.
2 Mg# = 100 (Mg/(Mg + Fe₂)) on molar basis.
3 ALS = ALS Group, Reno, NV; F11 = Fellah (2011); VB78 = Van Kooten and Buseck, 1978; C72 = Cummings, 1972; W97 = Wolfe et al., 1997; FG97 = Fodor and Galar, 1997.
4 Collected by F. Goff and C.J. Goff in October 2012 from NW side of island; approximate age is 13.8 ka (Cortés et al., 2005).
gabbro intrusive, as described above. Monzogabbro blocks and enclosing vesicular lava from the lower NW flank of Stromboli are very similar chemically indicating that they are probably part of the same magmatic event (Cortés et al., 2005).

A plot of total alkalis versus Mg# (Fig. 6) provides another means to evaluate similarities and differences among the various gabbros, gabbro xenoliths, and lavas. Generally speaking, values of Mg# (defined as $100 \times \{\frac{Mg}{Mg + Fe^{2+}}\}$ on a molar basis) that are ≥ 65 indicate primitive (or primary) magma compositions, whereas Mg# values ≤ 60 indicate evolution of magma from a primitive source (Wilson, 1989). The chemical data of Table 2 group into two clusters. The first cluster includes all fine- to medium-grained, olivine-augite gabbros and related lavas around Mount Taylor, the Stromboli gabbro-lava pair, Colton lava, Mauna Kea lava, and one Colton xenolith. They have high total alkalis and lower Mg# values between 58 and 35.

The second cluster includes five of six gabbro xenoliths listed in Table 2 including the two analyzed xenoliths from Mount Taylor. These xenoliths have very low total alkalis and very high Mg# values of 73 to 92. In fact, sample F10-06, the gabbro xenolith containing abundant chrome diopside, has the highest Mg# of all listed samples. These five xenoliths apparently have upper mantle or lower crustal sources (Cummings, 1972; Baldridge, 1979; Fodor and Galar, 1997; Schmidt et al., 2010; Schrader et al., 2010).

HIDDEN SHALLOW GABBRO BODIES

We have mapped two areas of domed Cretaceous strata and one unusual volcanic uplift in the Mount Taylor area, which we believe are magma-driven and may be manifestations of shallow gabbroic intrusions. These are the San Fidel and Devil Canyon Domes south of Mount Taylor, and the American Canyon uplift north of Mount Taylor (Fig. 2).

San Fidel Dome

San Fidel Dome was first recognized by Hunt (1938, p. 74) and the SE edge was mapped by Lipman et al. (1979). The entire feature is elliptical, about 3 x 2 km trending northeast (Goff et al., 2008). The northern side and crest of the dome is covered by pyroxene trachybasalt (F07-61, Table 2), the same trachybasalt dated at 2.78 Ma that hosts gabbro blocks (F07-74) at its source scoria cone (described above). The southern portion of the dome is eroded down to Cretaceous Mancos Shale in the core of the structure. Well-exposed high-angle faults separate flat lying Cretaceous rocks surrounding the dome from folded and faulted rocks within it (Fig. 7). Total uplift is 370 m determined by the difference in elevation between uplifted lava at the crest of the dome and non-deformed lava beneath the scoria cone. A dike of extremely olivine-rich basalt (olivine nephelinite) trending N80E cuts flat-lying Cretaceous rocks west of the dome but terminates abruptly at the dome margin faults (Goff et al., 2008; Goff et al., this volume). Southeast of the dome, porphyritic trachydacite flows and intrusive rocks are exposed (Lipman et al., 1979), which are dated at 2.63 ± 0.10 Ma (Osburn et al., 2009).

No intrusive rocks or dikes are found in the eroded southern core of the dome, but the folded and uplifted Cretaceous rocks contain localized hydrothermal alteration of opal/chalcedony, calcite, clays, and Fe-Mn oxides (Goff et al., 2008, Fig. 9). The State 36-1 oil test well that was drilled in the eroded southern core of the dome to 900 m (2953 ft), did not intersect any igneous rocks but did encounter a repeated section of Cretaceous rocks that we interpret as thrust faulting caused by magma intrusion (Fig. 8).

Presumably, the dome and associated alteration are caused by emplacement of an underlying shallow intrusive body (Hunt, 1938; Lipman et al., 1979) younger than 2.78 Ma (Goff et al., 2008). Lipman et al. (1979) interpret the intrusive body as trachydacite (their “porphyry of San Jose Canyon”), but our interpretation due to the presence of the marginal nephelinite dike, gabbro blocks in the scoria cone, and other shallow gabbros in the area, is that the intrusive body is possibly gabbro (Fig. 8). Alternatively the underlying intrusion could be a composite body of gabbro and
a 2.63 Ma monzonite magmatically equivalent to the “porphyry of San Jose Canyon.”

Devil Canyon Dome

Devil Canyon Dome was also first recognized by Hunt (1938). It is located about 5 km north of San Fidel Dome (Fig. 2) in upper Rinconada Canyon. The dome is about 1.5 km in diameter and is recognized by an arcuate upwarp of locally faulted Cretaceous strata (Goff et al., 2008). Several mafic dikes with different strike directions cut across the NE crest of the dome and some of the Cretaceous rocks display weak, low-grade hydrothermal alteration. We suspect that possible emplacement of shallow gabbro related to Mount Taylor volcanism has formed the dome, dikes and alteration. A relatively low amplitude (± 20 gamma), 400 m-wide positive aeromagnetic anomaly, coincident with the Devil Canyon dome (GeoMetrics, 1979; line 242, p. AL53) supports the interpretation of a magnetite-bearing mafic intrusion at depth under the dome (R.M. Chamberlin, written commun, 2013).

American Canyon Uplift

American Canyon uplift is located about 7 km north of the amphitheater of Mount Taylor at a sharp west bend of the namesake canyon (Goff et al., 2010a). The uplift is defined by two, north-trending, down-to-the-west faults that expose over 75 m of volcaniclastic sediments along the south wall of the canyon. Two scoria cones and associated flows cover the north wall. The eastern cone erupted flows containing gabbroic xenoliths (site 8, Fig. 2; F09-90, Table 1), which are dated at 2.30 ± 0.13 Ma. The sediments south of the canyon are ultimately capped by an aphyric lava flow dated at 1.76 ± 0.05 Ma. Both of the dated flows are offset by the easternmost fault mentioned above. This area is unusual because no other place north of Mount Taylor displays such a thick section of sediments surrounded and capped by relatively young flows. We suspect that emplacement of a small gabbroic intrusion <1.76 Ma has caused uplift of the sediments and flows in this area.

CONCLUSION

In addition to a 0.5 km diameter gabbro plug previously identified in the amphitheater of Mount Taylor (Hunt, 1938), smaller, shallow gabbro intrusions have now been found both SW and NE of the volcano. Shallow gabbros and the gabbro blocks found in a young scoria cone are similar in texture and mineralogy to each other and they are similar in chemistry to co-magmatic trachybasalt lava flows erupted around the volcano. In this respect, shallow Mount Taylor gabbros resemble the gabbro-lava pair from Stromboli, Italy. Because shallow fine-to medium grained gabbro intrusions are relatively common in and around Mount Taylor, we infer that similar hypabyssal gabbro intrusions have caused structural upheaval beneath the San Fidel and Devil Canyon domes, and perhaps the American Canyon uplift.

In contrast, shallow Mount Taylor gabbro intrusions are different in texture, mineralogy, and chemistry to coarser grained gabbro xenoliths that occur in the trachybasalt lavas around Mount Taylor. Most of the gabbro xenoliths contain hypersthene and are norite or related cumulate rocks. They resemble gabbro xenoliths found in alkalic basalt lavas from Colton crater, Arizona and Mauna Kea volcano, Hawaii, which have a mantle-crustal origin (Cummings, 1972; Fodor and Galar, 1997). The coarser grained Mount Taylor xenoliths probably originate at depths of 35 to 50 km from near the crust-mantle interface or from crystal-lized magma reservoirs deep beneath the volcano (Schrader et al., 2010; Schmidt et al., 2010), a postulated depth of origin similar to gabbroic xenoliths throughout the Rio Grande rift region (Laughlin et al., 1971; Baldridge, 1979).

ACKNOWLEDGMENTS

NM STATEMAP Program, New Mexico Bureau of Geology and Mineral Resources funded F. Goff, W. McIntosh, and S. Kelley. Fieldwork in New Mexico by J.A. Wolff was enabled by NSF grant EAR-0810306. K. Fellah (now at Schlumberger-Doll Research Center, Cambridge, MA) and ALS Laboratory Group (Reno, NV) provided chemical analyses, L. Peters (NMBG&MR)
produced Ar/Ar dates and D. Mann (High Mesa Petrographics) crafted polished thin sections. C. Cikoski (NMBG&MR) made the Figure 5 template. Excellent peer reviews were obtained from Giday WoldeGabriel (Los Alamos National Laboratory) and R.H. Chamberlin (NMBG&MR). We also thank Chamberlin for the Devil Canyon Dome aeromagnetic data. C.J. Goff (Consultant, Los Alamos) provided editorial expertise and endless enthusiasm for the project.

REFERENCES

Baldridge, W.S., 1979, Mafic and ultramafic inclusion suites from the Rio Grande rift (New Mexico) and their bearing on the composition and thermal state of the lithosphere: Journal of Volcanology and Geothermal Research, v. 6, p. 319-351.

Baldridge, W.S., 1979, Mafic and ultramafic inclusion suites from the Rio Grande rift (New Mexico) and their bearing on the composition and thermal state of the lithosphere: Journal of Volcanology and Geothermal Research, v. 6, p. 319-351.

Baldridge, W.S., 1979, Mafic and ultramafic inclusion suites from the Rio Grande rift (New Mexico) and their bearing on the composition and thermal state of the lithosphere: Journal of Volcanology and Geothermal Research, v. 6, p. 319-351.

Baldridge, W.S., 1979, Mafic and ultramafic inclusion suites from the Rio Grande rift (New Mexico) and their bearing on the composition and thermal state of the lithosphere: Journal of Volcanology and Geothermal Research, v. 6, p. 319-351.

Baldridge, W.S., 1979, Mafic and ultramafic inclusion suites from the Rio Grande rift (New Mexico) and their bearing on the composition and thermal state of the lithosphere: Journal of Volcanology and Geothermal Research, v. 6, p. 319-351.

McCaw, D., Read, A., Lawrence, J.R., Goff, F., and Goff, C.J., 2009, Preliminary geologic map of the San Mateo 7.5 minute quadrangle, Cibola and McKinley counties, New Mexico: New Mexico Bureau of Geology and Mineral Resources, Open-file Geologic Map 194, 1:24,000 scale (color); revised 2011.

