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VOLCANIC FIELD, WESTERN COLORADO
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"Department of Physical and Environmental Sciences, Colorado Mesa University, 1100 North Ave., Grand Junction, CO 81501, rcole@
coloradomesa.edu;
*Department of Natural and Environmental Sciences, Western State Colorado University, 600 North Adams Street, Gunnison, CO 81231;
’New Mexico Bureau of Geology, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM, 87801

ABsTRACT—The Grand Mesa Volcanic Field (GMVF) in western Colorado covers about 166 km? and ranges in elevation from 3452 (east)
to 3000 m (west). Miocene (?) and Eocene strata underlie the basaltic lavas. The field can be subdivided topographically and geochemically
into three areas: Western Tableland (WT), Crag Crest-Crag Crest Bulge (CC-CCB), and Ridge and Peak (RAP). Data for this study are based
on 29 whole-rock “’Ar/*°Ar dates, 81 ICP-MS analyses, and 404 ED-XRF analyses of samples collected at 46 locations. Dates range from
10.92+0.24 to 9.63+0.16 Ma, with a possible bimodal distribution. Age values for the dike and flow samples in the RAP area (N=9) range
from 10.49+0.06 to 9.99+0.01 Ma, whereas the dike and flow samples in the CC-CCB area (N=4) are between 10.74+0.05 to 10.52+0.05
Ma. The flow samples from the WT area (N=16) range from 10.92+0.24 to 9.63+0.16 Ma. Major-element-oxide values from both ICP-
MS and ED-XRF analyses show geographic partitioning. Samples from the CC-CCB area are noticeably enriched in silica, potassium, and
phosphorous compared to those from the WT and RAP areas. Using a TAS classification, the CC-CCB samples are mostly shoshonite with
minor latite, whereas the WT and RAP samples are mostly basaltic andesite and basalt. Chemo-stratigraphic variations documented in a drill
core in the WT area, suggest that both magmatic differentiation and injection of new magma occurred during eruption of the flow sequence.
The CC-CCB area has the only well-defined vent complex, consisting of a large discontinuously exposed dike and associated pyroclastics.
The chronological and geochemical correlation of this complex to flows in the WT and RAP is not well understood. Additional undiscovered
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vent areas are likely present.

INTRODUCTION
Objective

The objective of this paper is to summarize the geochrono-
logical and geochemical characteristics the basaltic lava flows
and dikes that make up the GMVE, and to describe a new vent
area. Because this is a summary paper, only selected parts of
the database are presented.

Field Area

Grand Mesa is a large erosional landform that dominates the
skyline of western Colorado (Fig. 1). The greater Grand Mesa
area stretches 67 km from Palisade, CO, on the west, to Elec-
tric Mountain on the east, and is bounded by the Colorado and
Gunnison Rivers and their tributaries. The GMVF occupies the
highest parts (3452 to 3000 m) of the greater Grand Mesa area
and is about 54 km long and 22 km wide. The GMVF lavas
have protected the underlying sedimentary rocks from erosion,
creating a classic example of topographic inversion (Young
and Young, 1968; Yeend, 1969, Aslan et al., 2008, 2010).

In this paper, the GMVF is subdivided into four areas (Fig.
2): (1) Western Tableland; (2) Crag Crest-Crag Crest Bulge;
(3) Ridge and Peak; and (4) Landslide Bench. The Western
Tableland (WT) gives Grand Mesa its characteristic profile and
has an area of approximately 135 km?. It represents the main
lava-flow mass, which rests unconformably (?) on the Mio-

cene (?) Goodenough formation (informal designation by Cole
et al., 2013), the Eocene Green River Formation, and Uinta
Formation (rare). The WT area has a “Y” shape defined by
Palisade lobe (PL) and Flowing Park lobe (FPL), which merge
into the “Stem” of the “Y.” The Crag Crest-Crag Crest Bulge
(CC-CCB) area is higher than the WT, ranging from 3305 to
3410 m (Fig. 2). Crag Crest Bulge (CCB), which is about 1.8
km long, is connected to Crag Crest Ridge (CCR), which is 4.0
km long and exposes up to 186 m of contorted, poorly defined
lava flows. Significant talus occurs along the base of CCB and
CCR.

The Ridge and Peak (RAP) area consists of lava-flow rem-
nants that extend from the easternmost tip of CCR (called
Finch Ridge) to Electric Mountain, including Leon Peak (LP),
Green Mountain (GM), Priest Mountain (PM), Mt. Hatten
(MH), Crater Peak (CP), and Mt. Darline (MD) (Figs. 1 and
2). The combined surface area of these highlands is conserva-
tively estimated to be about 25 km?. Crater Peak is the highest
point (3452 m). Dikes large enough to show on regional geo-
logic maps (Tweto et al., 1976a, 1976b; Tweto, 1979) occur
at Lombard Ridge (LR), Chimney Rocks Ridge (CRR), and
Little Dyke Creek (LDC), and a basaltic plug crops out at Iron
Point (IP) (Fig. 1). Only the LR and CRR dikes are included
in this study. Pleistocene glaciation has strongly influenced the
RAP area (Yeend, 1969).

Numerous slump blocks form landslide benches around the
WT, CC-CCB, and RAP areas (Fig. 2). The mass wasting that
created these benches began during the late Pliocene and accel-
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FIGURE 1. Index maps for the project area. The large map shows the outline of remnant basaltic flows of the GMVF and associated cultural features. Insert map
in upper left shows the general location of GMVF in respect to other fields in northwestern and north-central Colorado (modified from Kunk et al., 2002). Note that

the GMVF occupies only the higher elevations of the greater Grand Mesa area.

erated during Pleistocene ice loading (Young and Young, 1968;
Yeend, 1969, 1973; Baum and Odum, 1996, 2003; Baum et al.,
2007). The slumping has greatly complicated reconstruction of
the GMVF and definition of its volcanic history (Green and
Cole, 2016).

Volcanic History and Background

Volcanism that created the GMVF is associated with large-
scale, mantle-driven, dynamic processes related to uplift of the
Colorado Plateau and Southern Rocky Mountains, and creation
of the Rio Grande Rift (Karlstrom et al., 2005, 2012 and refer-
ences therein). Basaltic volcanism in north-central and north-
west Colorado began approximately 26 Ma and continued in-
termittently into the Holocene (Larson et al., 1975; Leat et al.,
1988, 1989; Budahn et al., 2002; Kunk et al, 2002; Day and
Bove, 2004). Five eruption stages are defined by radiometric
dating: (1) 24-22 Ma, (2) 16-13 Ma, (3) 11-9 Ma, (4) 8-7 Ma,
and (5) <4 Ma (Kunk et al., 2002). Stage 3 volcanism produced
the GMVF, nearby Battlement Mesa Volcanic Field, and most
of the Glenwood Springs Volcanic Field (Fig. 1). The GMVF
may have covered about 1300 km? at one time (Budahn et al.,
2002), but in-situ remnants (i.e., WT, CC-CCB, and RAP ar-
eas) have a present-day footprint of only about 166 km?.

The geochemical complexity of late Cenozoic basaltic
rocks in northwest Colorado was first recognized by Larson et
al. (1975) and Leat et al. (1988). Unruh et al. (2001), Budahn
et al. (2002), and Stork (2006) further documented these geo-
chemical and petrological variations in many of the fields in
north-central and northwest Colorado (Fig. 1), but did not pres-

ent data for GMVF. Beginning in about 2008, co-authors Stork
and Cole began sampling outcrops, roadcuts, and drill core at
many areas across the GMVF and found similar geochemical
variations, as summarized in Cole et al. (2010, 2016).

GEOCHRONOLOGY

For many years, the age of the GMVF was placed at 9.7+0.5
Ma, based on a single “K/*°Ar date (Marvin et al., 1966). Al-
though this date is considered accurate, it does not reflect the
much broader range of values recognized today. Currently, age
control for the GMVF consists of 31 “Ar/*Ar dates (Table 1).
Eleven whole-rock samples were dated at the geochronology
laboratory of the U.S. Geological Survey (Kunk and Snee,
1998; Kunk et al., 2001, 2002) and 20 at the New Mexico
Geochronology Research Laboratory (NMGRL). The 11 U.S.
Geological Survey ages are from lava flows at Skyway (N=8)
and Lands End (N=3), which are both in the WT area (Fig.
3). At the Skyway roadcuts, which is along Colorado Highway
65 near the Mesa Lakes, a section measured during the pres-
ent study shows that at least 23 flows are exposed with a total
thickness of about 93 m. The U.S. Geological Survey samples
at Skyway appear to bracket the total flow thickness, although
some flows were not sampled. The three Lands End samples
were collected along roadcuts of U.S. Forest Service Road 100.
A measured section at Lands End for the present study iden-
tified six flows with a total thickness of 64 m. The elevations
provided in Kunk et al. (2001) suggest that the bottom, top,
and middle parts of the sequence were sampled at Lands End;
however, the coordinates given for the samples appear to be in
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FIGURE 2. Physiographic components of the greater Grand Mesa area and diagrammatic east-west topographic-stratigraphic cross section. The WT area consists of
the PL, FPL, and the “Stem.” The RAP area consists of scattered flow remnants, such as LP, MH, CP, and MD. The 2750-meter line is the approximate outer limit of
the landslide benches that surround the intact flows. The “Goodenough” formation, which underlies most of the GMVF, is an informal unit. It is up to 300 m thick,
and consists of variegated bentonitic mudrock, chert-bearing limestone (rare), lithic granule-cobble conglomerate, and fine- to very coarse-grained lithic sandstone

and conglomeratic sandstone (Cole et al., 2013).

error. Regarding the Kunk et al. (2001, 2002) dates, it should
be noted that one sample at Skyway (K98-9-18A3&A4) and
one sample at Lands End (K98-8-18G2&GS5) have anomalous-
ly young ages (9.36 and 9.57 Ma, respectively; Table 1) when
compared to with superjacent and subjacent samples at these
locations. Both dates were from total-gas analysis (Kunk, et al.,
2001), and no uncertainty values were given. Thus, we have
discarded both samples from the discussions that follow, but in-
clude them on Figures 4 and 5 and in Table 1 for completeness.

In the present study, samples for whole-rock “°Ar/*’Ar dat-
ing (N=20) were collected from across the GMVF (Fig. 3).
The methodology and details for the data are provided in the
Supplementary Documentation. In the WT area, seven sam-
ples came from FPL (N=2), Palisade Point (N=1), the D-9 core
(N=3), and at “East Stem” (N=1) above Grand Mesa Lodge.
The D-9 core (archived at CMU) was part of a nine-hole
ground-water investigation by the U.S. Bureau of Reclamation
(K. Weston, unpubl. report by U.S. Bureau of Reclamation,
1987). Four samples were collected from CC-CCB; two are

from flows (top and bottom of the exposed sequence) and two
are from a major dike. Nine samples from the RAP area were
collected at Finch Ridge (N=1), LP (N=2), MH (N=1), CP
(N=1), MD (N=2), LR (N=1), and CRR (N=1). All of the RAP
samples are from flows except those at LR and CRR, which are
from large dikes.

Results

Figure 4 summarizes the “Ar/*’Ar data for GMVF. Dis-
regarding samples K98-9-18A3&A4 and K98-8-18G2&G5
from Skyway and Lands End, respectively, the restricted
data set (N=29) values range from 10.92+0.24 to 9.6340.16
Ma (1.29 Ma), with a mean of 10.28 Ma, a median of 10.23
Ma, and a standard deviation of 0.30 Ma. The distribution of
dates (Fig. 4) has two principle modes at 10.53+0.01 Ma (N=7;
MSWD=1.04) and 10.14+0.02 Ma (N=10; MSWD=0.75).

The geographic distribution of “Ar/*°Ar dates across the
GMVF (Figs. 4 and 5) shows some subtle differences. Dates
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TABLE 1. Summary of “’Ar/*Ar dates for the GMVF. Data from Skyway (Mesa Lakes) and Lands End are from Kunk et al. (2001, 2002). For comparison, all values
have been normalized to a Fish Canyon Tuff sanidine age of 28.201 Ma. Two samples (K-98-8-A3&A4 at Skyway and K-98-81G2&GS5 at Lands End) from Kunk
et al. (2002) are listed in this table and posted on Figures 4 and 5, but are not used in the narrative of this paper. Dates for these two samples are based on total-gas
analysis and no uncertainty is given. Note that the coordinates for the three Lands End samples are in error; the values given in Kunk et al. (2001) plot about 600
m west of the roadcuts. The remaining dates were generated at the New Mexico Geochronology Research Laboratory. Abbreviations: WT, Western Tableland; CC-

CCB, Crag Crest-Crag Crest Bulge; RAP, Ridge and Peak.

Sample Location Remarks Age (Ma)* Latitude Longitude Elev.
Samples Analyzed by the U.S. Geological Survey (Kunk et al., 2001, 2002):

K-98-8-18F2&3 (WT) Skyway Roadcut Flow 9.63+0.16 39°2.51°N 108°4.00°W 3243 m
K-98-8-19E4&5 (WT) Skyway Roadcut Flow 9.85+0.03 39°2.80°N 108°3.97"W 3219 m
K-98-8-18D1 (WT) Skyway Roadcut Flow 10.10£0.28 39°2.93°N 108°3.94°W 3206 m
K-98-8-18C1&2 (WT) Skyway Roadcut Flow 10.11£0.15 39°3.02°N 108°3.92°W 3200 m
K-98-8-18B1&2 (WT) Skyway Roadcut Flow 10.11£0.04 39°3.05°N 108°3.88°W 3197 m
K-98-8-18A3&4 (WT) Skyway Roadcut Flow 9367 39°3.08°’N 108°3.83’W 3194 m
K-98-8-18B6 (WT) Skyway Roadcut Flow 10.12+0.04 39°3.15°N 108°3.67°W 3182 m
K-98-8-17A4 (WT) Skyway Roadcut Flow 10.4740.13 39°3.17°N 108°3.58°W 3170 m
K-98-8-1811&I4 (WT) Lands End Roadcut Flow 10.50+0.04 39°1.48°'N ? 108°13.78°W ? 3011 m?
K-98-8-18H4 (WT) Lands End Roadcut Flow 10.92+0.24 39°1.46’N ? 108°13.72°W ? 2999 m ?
K-98-8-18G2&GS (WT) Lands End Roadcut Flow 9.577? 39°1.43’N ? 108°13.57°W ? 2987 m ?
Samples Analyzed by the New Mexico Geochronology Research Laboratory:

GM-1 (WT) Palisade Point Lowest flow 10.57£0.01 39°2.78°N 108°15.08°W 2946 m
RC07-GM-B7 (WT) Flowing Park Lowest flow 10.05 £0.06 38°54.82°N 108°7.67°W 3059 m
RC07-GM-B6 (WT) Flowing Park Highest flow 9.82 £0.05 38°56.13°N 108°6.70°W 3076 m
DH-9 (WT) D-9 Core Flow at 43.3 m 10.14+0.04 39°1.69°N 108°3.80°W 3194 m
DH-9 (WT) D-9 Core Flow at 142.0 m 10.56+0.08 39°1.69°N 108°3.80°'W 3095 m
DH-9 (WT) D-9 Core Flow at 143.3 m 10.32+0.09 39°1.69°N 108°3.80°W 3094 m
GC-139 (WT) East Stem Upper flow 9.86+0.02 39°3.10°N 107°59.30'W 3288 m
CC-1 (CC-CCB) Crag Crest Ridge Dike 10.5240.05 39°3.66°N 107°57.81’W 3292 m
CC-2 (CC-CCB) Crag Crest Ridge Lowest flow 10.7440.05 39°3.65°N 107°57.78 W 3298 m
GCX-74 (CC-CCB) Crag Crest Ridge Highest flow 10.54 £0.01 39°3.61°’N 107°57.58W 3368 m
CC-3 (CC-CCB) Quarry Knob Dike 10.67+0.06 39°4.45°N 107°57.42°W 3176 m
GC-34 (RAP) Finch Ridge Flow 9.99+0.01 39°3.76’N 107° 55.63°W 3358 m
RC07-GM-BS5 (RAP) Leon Peak Lowest flow 10.45+0.04 39°4.71°N 107°50.39°'W 3347 m
RC07-GM-B4 (RAP) Leon Peak Highest flow 10.16%0.04 39°4.78°N 107°50.63°W 3391 m
RC07-GM-B2 (RAP) Mt. Darline Lowest flow 10.3940.05 39°1.76°’N 107°39.45°W 3430 m
RC07-GM-B3 (RAP) Mt. Darline Highest flow 10.22+0.11 39°1.77°N 107°39.47°W 3446 m
RC07-GM-B10 Mt. Hatten Highest flow 10.32+0.06 39°2.94°N 107°40.87°W 3422 m
RC07-GM-B11 Crater Peak Lowest flow 10.49+0.06 39°2.39°N 107°39.80°'W 3418 m
LBR-1 Lombard Ridge Dike 10.23£0.04 39°0.82°N 107°38.45°W 3246 m
RC07-GM-D1 Chimney Rocks Dike 10.18£0.05 39°7.18°N 107°35.66°W 2828 m

*All ages adjusted to Fish Canyon Tuff sanidine standard at 28.201 Ma. The uncertainty values are one sigma.

in the WT area range from 10.92+0.24 Ma to 9.63+0.16 Ma,
with a mean of 10.20 Ma, a median of 10.11 Ma, and a stan-
dard deviation of 0.34 Ma. Dates from the CC-CCB show the
tightest grouping for all of GMVF, with a range of 10.7440.05
Ma to 10.524+0.05 Ma, a mean of 10.62 Ma, a median of 10.61
Ma, and a standard deviation of 0.11 Ma. The dates from the
RAP area also have a relatively narrow spread, with a range of
10.494+0.06 Ma t0 9.99+0.01 Ma, a mean of 10.27 Ma, a medi-
an of 10.23 Ma, and a standard deviation of 0.16 Ma (Fig. 4).

Discussion

It should be noted that the date at Palisade Point (10.57+0.01
Ma; Table 1) is a significant control point for understanding
the timing of the topographic reversal that created the Grand
Mesa landform, and the erosional history of the ancestral up-

per Colorado River (Aslan et al., 2008, 2010; Cole, 2011). The
lava flow at Palisade Point rests on polylithic, unconsolidated
river gravel (Fig. 2) that is compositionally similar to the mod-
ern Colorado River in the Grand Junction area. At a scattering
of locations in the WT and RAP areas, lava flows rest on un-
consolidated gravels of the Goodenough formation, which are
dominated by diorite and andesite clasts (Cole et al., 2013) that
probably came from the West Elk and Elk Mountains. It is also
worth noting that Roebeck (2005) established “°Ar/*°Ar dates
(analysis by NMGRL) for the LDC dike (6.75+0.15 Ma) and
IP plug (14.7+1.1 Ma) on the eastern margin of the GMVF
(Fig. 1). Thus, they do not correspond to the any of the dates
from this study (Table 1). Roebeck (2005) also provides a date
for a sill associated with coals of the Williams Fork Formation
(Cretaceous) in the Bowie area (near Paonia, CO) at 9.59+0.12
Ma, which is in the range of the GMVF dates.
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GEOCHEMISTRY
Methodology

The geochemistry part of this study includes 485 whole-
rock samples collected from 46 locations (Fig. 3). Eighty-one
samples were first analyzed for major-element oxides and trace
elements by ICP-MS (inductively coupled plasma-mass spec-
troscopy) at ACTLabs (Ancaster, Ontario, Canada; 4 Lithore-
search package). The remaining 404 samples were analyzed at
Colorado Mesa University (CMU) with a Bruker Tracer I11-SD
energy-dispersive fluorescence (ED-XRF) spectrometer (vacu-
um conditions) to determine major-oxide values.

For the ED-XRF analyses, cut slabs were positioned over the
instrument’s 4 by 5 mm port and irradiated (Rh source) at three
or more random spots for one minute each. The instrument was
configured to measure K-al peaks for Na, Mg, Al, Si, P, K, Ca,
Ti, Mn, and Fe and calibrated with 25 cut slabs that had been
analyzed by ICP-MS to convert the ED-XRF spectral peaks to
major-element oxides in weight percent. The ED-XRF-oxide
sums for each spot assay were typically between 95 and 105%.
If the oxide sum exceeded these limits, data for that spot were
discarded (1.6% were rejected). Following this qualification
step, the oxide values from the spot assays for each sample
were averaged to a single value. Since the calibration was de-

veloped from the ICP-MS data, the ED-XRF oxide values are
considered acceptable for the geochemical mapping discussed
below. It should be noted, however, that the ED-XRF sodium
values were near the detection limit of the Bruker Tracer III-
SD, so there is greater uncertainty for those data.

Results

Tabular and graphical comparisons of the major-ele-
ment-oxide ICP-MS and ED-XRF data are given in Figure 6.
The log-log plot of the mean oxide values for the two suites
shows good agreement (R* = 0.99). Total-alkali (Na,0+K,0)
vs. silica (SiO,) plots also show similar groupings of data
points, and illustrate that a variety of mafic to intermediate
rocks are present. All samples are potassic. The majority of
the samples are basalt or basaltic andesite, with less abundant
potassic trachy basalt, shoshonite, and latite.

Geographic Variability

In Figure 7, the combined ED-XRF and ICP-MS data for
each area are summarized in TAS plots, SiO, vs. K,O plots, and
histograms. These diagrams clearly show the unique compo-
sition of the CC-CCB samples compared to the WT and RAP
groups, which are relatively similar to each other. The histo-
grams show that the WT (N=289) are mostly medium-K and
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high-K basalt and basaltic andesite, with less abun-
dant medium-K and high-K basalt, and only minor
amounts of potassic trachy basalt and shoshonite.
The RAP samples (N=87) are generally more po-
tassic with a higher proportion of high-K basalt and
basaltic andesite, potassic trachy basalt, and sho-
shonite. In striking contrast, the CC-CCB samples
(N=109) are mainly shoshonite and latite. It should
be noted that samples from the Lombard dike in the
RAP area are geochemically similar to the samples
at CC-CCB; however, the RAP flows are dissimilar.

Chemo-Stratigraphic Variability

The D-9 core, which is near the junction of PL
and FPL (Fig. 3), provides the thickest known flow
sequence (187.7 m) in the GMVF and was used to
define chemo-stratigraphic variations for the WT
area. As shown in Figure 8, the core contains least
26 flows ranging in thickness from 2.4 to 14.6 m.
Individual flows commonly have dense bases and
distinctly vesiculated tops that show both a’a and
pahoehoe structures. Thin (0.3-2.5 m) interbeds
(N=10) of red siltstone, silty claystone, and clayey
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SiO, (ICP-MS analysis) define three sequences. The TAS plot shows that most samples are basalt or basaltic andesite; however, flows 18 and 19 are more alkali-rich
potassic trachy basalt and flows 9 and 10 are shoshonite. See text for discussion. Abbreviations are explained in Figure 6.

limestone also occur, suggesting that significant periods of time
(possibly up to 100 kyr or more) may have occurred between
subsequent flow emplacements. Three *°Ar/*’Ar ages from the
core range from 10.56+0.08 to 10.14+0.04 Ma.

For geochemical analysis, the densest part of each flow in
the D-9 core was sampled. The stratigraphic variations of the
Si0,,K,0, MgO, and PO, values from the ICP-MS analyses
show the presence of three geochemical sequences (Fig. 8).
The sequence boundaries are defined by abrupt increases in
MgO concentration, and the lower and middle sequences are
capped by more alkaline potassic trachy basalt or shoshonite.
The lower sequence (9 flows with a composite thickness of
65.1 m) may have two subsequences that show upward de-
creases in MgO concentration with relatively uniform K,O and
P,O, concentrations. The uppermost samples (flow 18 and 19)
in the lower sequence are potassic trachy basalt with signifi-
cantly higher K,O and P,O, values compared to the medium-K
basalt and basaltic andesite found lower in the sequence. The
middle sequence (9 flows with a composite flow thickness of
53.3 m) shows a similar pattern. The basal sample (flow 17)
is a Mg-rich basalt (8.5 wt% MgO), whereas the upper two
samples (flows 9 and 10) are K,O- and P,O-rich shoshonites.

These two samples, however, are not as evolved as the sho-
shonites from the CC-CCB area (Fig. 7). Other samples in the
middle sequence are medium-K basalt and basaltic andesite;
however, decreasing K,O and P,O, concentrations in the lower
part of the sequence may indicate mixing with older, more al-
kaline magmas. The upper sequence (8 flows with a composite
thickness of 55.6 m) shows a similar pattern with a Mg-rich
basalt (8.2 wt% MgO) defining its base (flow 8) and decreasing
K,O and P,O, in the lower part of the sequence. Most of the
samples in the upper sequence are high-K basalt and basaltic
andesite.

The chemo-stratigraphic variations shown in Figure 8 sug-
gest that both magmatic differentiation and the introduction
of more mafic magmas with variable composition occurred
during emplacement of some WT flows.

VENT AREAS

Young and Young (1968) suggested that the GMVF magma
may have come from the LP area and/or from fissure eruptions,
now represented by the large east-west-trending dikes at CRR,
LR, and LDC (Fig. 2). These suggestions were never con-
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firmed. In 2002, based on an observation by John Trammell,
a vent complex was discovered on a small, reddish hill (147
m high) between Cottonwood No. 1 and Cottonwood No. 4
Reservoirs and Lily Lake (Fig. 9). Mapping of this hill, herein
called “Quarry Knob” (QK), showed that it consists of red to
pink pyroclastics (agglutinated ash, cinders, and small bombs)
associated with three southwest-trending, near-vertical dikes
up to 40 m across. One of the QK dikes continues southwest to
“JB’s Knob” (JBK) where it is about 25 m wide and near ver-
tical. The east side of the JBK dike has minor red agglutinate
and a well-defined chill zone with columnar jointing on the
west flank. The next occurrence of the dike is at CCR, where
it is about 15 m wide, near vertical, and has columnar jointing
on both sides. The CCR dike intrudes into a 45 m thick series
of lower flows (base not exposed), but does not cut through the
upper part of the sequence, which consists of 60-90 m of small,
highly contorted, pahoehoe-type flows, and gray agglutinate
(rare). This upper (un-intruded) sequence forms CCB and the
upper half of CCR. The CC-CCB complex is located on the
western flank of a prominent positive aeromagnetic anomaly
(Fig. 3) shown on a regional map by Grauch and Plesha (1989).

Four “Ar/*’Ar dates were established for the CC-CCB com-
plex (Table 1, Fig. 9). The QK dike is 10.67+ 0.06 Ma and
the CCR dike is 10.52+0.05 Ma. A sample from a flow cut by
the CCR dike is 10.744+0.05 Ma, and a sample from a contort-
ed flow near the top of CCR is 10.54+0.01 Ma. Dates from
the eastern stem and Finch Ridge, which are about the same
elevation, are noticeably younger (9.86+0.02 and 9.99+0.01

RAP areas flowed around.

Geochemical correlation
of the flows and dikes in the
WT and RAP area with the
CC-CCB vent complex are
uncertain. In the D-9 core,
flows 9 and 10 are shosho-
nite (Fig. 8); however, the
enrichment in SiO,, K O, and P O is not as high as in the CC-
CCB samples. A correlation between CC-CCB and LP is also
possible. LP lies about 10.6 km east of the CC-CCB complex
(Figs. 2 and 3) and consists of nine flows with a total thickness
of about 137 m. The lowest exposed flow at LP is dated at
10.45+0.04 Ma and the highest flow is 10.16+0.04 (Table 1).
Flow 6, which is near the middle of the LP sequence, is a sho-
shonite; however, LP samples above and below are dissimilar.
The connection between the CC-CCB complex and the flows
in the eastern RAP area (MD, MH, CP) and the LR dike (Fig.
4) is also uncertain. All of the dates from flows in the eastern
RAP area are between 10.49+0.06 and 10.23+0.11 Ma (Fig. 5)
and are similar to those at CC-CCB; however, all of the flows
in this area are not enriched in any of the oxides that charac-
terize the CC-CCB samples. The LR dike, which is dated at
10.234£0.04 Ma and cross-cuts flows near MD, is enriched in
SiO,, Na 0O, and K O (Fig. 7) but is slightly younger than any
dates at CC-CCB.

SUMMARY

The upper parts of Grand Mesa document the remains of
one of the largest late Cenozoic basaltic lava fields in western
Colorado, and is subdivided into three areas (WT, CC-CCB,
and RAP). “Ar/*’Ar dates (N=29) for the total field range from
10.92+0.24 to 9.63+£0.16 Ma (mean=10.28 Ma), and show
an overall bimodal distribution. Dikes and flows in the RAP
area cluster between 10.49+0.06 to 9.99+0.01 Ma, where-
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as the dikes and flows in the CC-CCB area cluster between
10.74+0.05 to 10.52+0.05 Ma. Flows of the WT area are more
variable, ranging from 10.92+0.24 to 9.63+0.16 Ma. Major-el-
ement-oxide values from both ICP-MS analyses (N=81) and
ED-XRF analyses (N=404) show geographic partitioning.
Samples from the CC-CCB area are dominated by shoshonite
and latite, compared to the medium- to high-K basalt and ba-
saltic andesite samples that dominate the WT and RAP sam-
ples. The distribution of the CC-CCB samples coincides with
a large positive aeromagnetic anomaly. Major-element-oxide
values also show chemo-stratigraphic variations, as expressed
in flows from the D-9 core. These variations suggest that both
magmatic differentiation and the introduction of more mafic
magmas with variable composition occurred during the erup-
tive history. The CC-CCB area has the only well-defined vent
complex, consisting of a major dike and scattered pyroclastics.
Ages for the dike and associated flows are tightly constrained
between 10.74+0.05 and 10.52+0.05 Ma, and the geochemical
composition is uniform. The chronological and geochemical
correlation of this complex to flows in the WT and RAP is not
well understood. Additional unknown vent areas are likely
present.
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