U-Pb geochronology of middle–late Eocene intermediate volcanic rocks of the Palm Park Formation and Orejon Andesite in south-central New Mexico

R.H. Creitz, B.A. Hampton, G.H. Mack, and J.M. Amato
Supplemental data: https://nmgs.nmt.edu/repository/index.cfml?rid=2018004

in:
https://doi.org/10.56577/FFC-69

This is one of many related papers that were included in the 2018 NMGS Fall Field Conference Guidebook.

Annual NMGS Fall Field Conference Guidebooks

Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico.

Free Downloads

NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, and other selected content are available only in print for recent guidebooks.

Copyright Information

Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. No material from the NMGS website, or printed and electronic publications, may be reprinted or redistributed without NMGS permission. Contact us for permission to reprint portions of any of our publications.

One printed copy of any materials from the NMGS website or our print and electronic publications may be made for individual use without our permission. Teachers and students may make unlimited copies for educational use. Any other use of these materials requires explicit permission.
U-Pb Geochronology of Middle–Late Eocene Intermediate Volcanic Rocks of the Palm Park Formation and Orejon Andesite in South-Central New Mexico

Ryan H. Creitz, Brian A. Hampton, Greg H. Mack, and Jeffrey M. Amato

Abstract—U-Pb zircon ages from the middle–late Eocene intermediate volcanic rocks of the Palm Park Formation and Orejon Andesite provide new geochronologic constraint on the duration of volcanism that took place just after the Laramide orogeny and prior to the onset of latest Eocene bimodal volcanism and initiation of the Rio Grande rift in south-central New Mexico at ~36 Ma. Presented here are nine new U-Pb zircon ages (n=247 analyses) from the Organ, Doña Ana, Robledo, and Sierra de las Uvas Mountains that fall within a range of ~45–40 Ma. The oldest age determined from this study was collected from an ash-fall tuff exposed in the lower part of the Palm Park Formation in the Robledo Mountains (Apache canyon) and yields an age of 45.0±0.7 Ma. Three samples from intermediate volcanic flows in the Orejon Andesite of the Organ Mountains (Fillmore canyon) yield ages of 44.0±1.5, 43.8±0.4, and 42.8±1.5 Ma. Four samples were collected from a series of intermediate composition (andesite to dacite) volcanic flows in the Doña Ana Mountains (Cleofas canyon) and Robledo Mountains (Faulkner canyon) and yield ages of 41.6±0.7, 41.3±0.7, and two nearly-identical ages of 41.0±0.6 Ma. The youngest age reported from this study was determined from an ash-fall tuff exposed near the top of the Palm Park Formation in the eastern part of the Sierra de las Uvas fault block and yields an age of 39.6±0.5 Ma. New data are presented here, together with previously reported ages and fossil occurrences from the Palm Park Formation, Orejon Andesite, and equivalent units throughout south-central New Mexico, including the Cleofas Andesite and Rubio Peak Formation. Based on new ages and fossil age ranges, we favor a model where these rocks were erupted and deposited over a ~10 my period between ~46–36 Ma during which mantle wedge material was re-introduced throughout south-central New Mexico just prior to onset of the Rio Grande rift.

Introduction

The Late Cretaceous–middle Eocene Laramide orogeny was the final stage of mountain building associated with ocean-continent convergence and subduction of the Farallon plate beneath western North America and marks the tectonic transition from a more steeply-dipping subducting slab and thin-skinned deformation of the Sevier orogeny to more shallowly-dipping subduction and thick-skinned, basement-involved deformation (e.g., Dickinson and Snyder, 1978; Seager, 1981; Seager et al., 1986; Dickinson et al., 1988, Seager et al., 1997; DeCelles, 2004; Dickinson, 2004; Nummendal, 2004; Seager, 2004). Throughout the southwestern U.S., this tectonic transition resulted in the eastward, inboard stepping of the Cordilleran orogenic front, foreland depocenters, and magmatic-volcanic centers into parts of eastern Arizona and central New Mexico (e.g., Snyder et al., 1976; Dickinson and Snyder, 1978; Seager, 2004; McMillan, 2004; Amato et al., 2017). The final Paleocene–middle Eocene deformational stage of the Laramide orogeny in southernmost New Mexico has been well documented (Figs. 1, 2) and is recorded by nonmarine clastic strata that are preserved in a series of short-wavelength, wedge-top basins that include the Little Hat Top, Skunk Ranch, Klondike, Potrillo, and Love Ranch basin (Fig. 2; Seager et al., 1986; Seager and Mack, 1986; Mack and Clemons, 1988; Lawton and Clemons, 1992; Lawton et al, 1993; Seager et al., 1997; Seager, 2004; Clinkscales and Lawton, 2014). Although there is a near-continuous stratigraphic record of Paleocene–middle Eocene synorogenic sedimentation throughout south-central New Mexico, little is known about the age and duration of middle–late Eocene magmatism, volcanism, and volcanioclastic sedimentation that occurred just after Laramide deformation and prior to the onset of latest Eocene–Oligocene bimodal volcanism of the “ignimbrite flare-up” and initiation of the Rio Grande rift in this region at ~36 Ma (Fig. 3; e.g., Cather et al., 1984; Cather, 1990; McIntosh et al., 1992 Mack et al., 1998; Lawton and McMillan, 1999; McMillan et al., 2000). At the largest scale, it is also unclear what lithosphere-scale mechanisms were driving mid–late Eocene magmatism just prior to the onset of the Rio Grande rift.

The focus of this study is on age relationships of intermediate volcanic and volcanioclastic strata of the middle–late Eocene Palm Park Formation and Orejon Andesite that crop out throughout south-central New Mexico (Figs. 1, 3). Presented here are nine new U-Pb zircon ages from ash-fall tuffs and intermediate volcanic flows that crop out in the Organ, Doña Ana, Robledo, and Sierra de las Uvas Mountains near Las Cruces, New Mexico (Fig. 1). New ages from these rocks help constrain the initial onset, overall duration, and final termination of post-Laramide, pre-rift volcanism in south-central New Mexico. Results from this study are presented and discussed in the context of age-equivalent, pre-rift volcanic and volcanioclastic strata that are exposed in other parts of south-central New Mexico (e.g., Caballo, Potrillo, Goodsight, southern San Andres Mountains, Black Range and Cooke’s Range; Fig. 1).
The tectonic transition from the final deformational stage of Laramide orogenesis to the initiation of the Rio Grande rift in south-central New Mexico is recorded by a near-continuous stratigraphic record that includes from-base-to-top (1) Paleocene–earliest middle Eocene synorogenic strata of the Love Ranch Formation, (2) middle Eocene–earliest late Eocene volcanogenic and volcaniclastic strata of the Palm Park Formation and Orejon Andesite (and roughly age-equivalent rocks of the Rubio Peak Formation and Cleofas Andesite; Table 1), and (3) latest Eocene–early Oligocene volcanic rocks of the Bell Top Formation (and associated ignimbrite rocks of the Doña Ana and Organ caldera complexes; Fig. 3; e.g., Seager 2004). The Love Ranch Formation represents the final stage of deformation and sedimentation associated with the Laramide orogeny (Seager, 2005). The lower age range for the Love Ranch is constrained biostratigraphically by late Paleocene–early Eocene palynomorphs in the basal parts of the unit (Thompson, 1982; Seager et al., 1997). The contact between the upper parts of the Love Ranch and overlying rocks of the Palm Park Formation (and equivalent units) can be observed in localized Laramide paleovalleys where the Love Ranch appears to conformably
underlie (and in some localities is interbedded with) the Palm Park Formation (Seager, 1981; Postma, 1986; Mack et al., 1994; Seager et al., 1997; Seager, 2004; Amato et al., 2017).

The onset of the Rio Grande rift in south-central New Mexico is marked by late Eocene (~36 Ma) bimodal volcanism and minor sedimentation recorded in members of the Bell Top Formation and rocks of the Organ caldera (e.g., Cueva, Achenback Park, Squaw Mountain Tuffs) and the Doña Ana caldera (e.g., Doña Ana Rhyolite and Goat Mountain Rhyolite; Fig. 3; Clemons, 1975; Seager et al., 1976; Seager, 1981; McIntosh et al., 1991; Mack et al., 1998; McMillan et al., 2000; Zimmerer and McIntosh, 2013). The late Eocene–early Oligocene age of the Bell Top Formation is based on $^{40}\text{Ar}/^{39}\text{Ar}$ dates from ash-flow tuff units that range from 35.7–28.6 Ma (McIntosh et al., 1991). The Cueva, Achenback Park, and Squaw Mountain have $^{40}\text{Ar}/^{39}\text{Ar}$ ages of 36.45±0.08, 36.23±0.14, and 36.0±0.16 Ma (Zimmerer and McIntosh, 2013), and U-Pb zircon ages of 36.441±0.020, 36.259±0.016, and 36.215±0.016 Ma (Rioux et al., 2016).

The contact between the top of the Palm Park Formation (and equivalent units) and base of the Bell Top Formation and age-equivalent ignimbrites of the Doña Ana and Organ caldera complexes (i.e., ignimbrite flare-up). Stratigraphic horizons with ages denote nine discrete sample localities with new U-Pb zircon ages reported in this study. Note that two samples with nearly identical ages (41.0±0.6 Ma) occupy the same stratigraphic horizon on this figure but represent two distinct sample localities. Vertebrate fossil age range is from Lucas and Williamson (1993), Lucas et al. (1997), and Lucas (2015).
TABLE 1. Summary of all new and previously published geochronologic ages from intermediate to mafic volcanic rocks that occupy the stratigraphic position of the Palm Park Formation and Orejon Andesite in south-central New Mexico.

<table>
<thead>
<tr>
<th>Method</th>
<th>Age (Ma) ± (Ma)</th>
<th>Material Dated</th>
<th>Lithology</th>
<th>Formation</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>K-Ar</td>
<td>35.9 ± 1.6</td>
<td>Plagioclase (I)</td>
<td>Andesite</td>
<td>Cleofas Andesite</td>
<td>Clemons, 1979</td>
</tr>
<tr>
<td>K-Ar</td>
<td>36.4 ± 2.3</td>
<td>Hornblende (I)</td>
<td>Latite</td>
<td>Rubio Peak Fm.</td>
<td>Clemons, 1979</td>
</tr>
<tr>
<td>K-Ar</td>
<td>36.7 ± 1.4</td>
<td>Hornblende (I)</td>
<td>Andesite porphyry</td>
<td>None listed</td>
<td>Loring & Loring, 1980</td>
</tr>
<tr>
<td>K-Ar</td>
<td>37.3 ± 2.3</td>
<td>Hornblende (I)</td>
<td>Latite</td>
<td>Rubio Peak Fm.</td>
<td>Marvin and Cole, 1978</td>
</tr>
<tr>
<td>K-Ar</td>
<td>37.6 ± 2.0</td>
<td>Hornblende (I)</td>
<td>Latite porphyry</td>
<td>Rubio Peak Fm.</td>
<td>Clemons, 1979</td>
</tr>
<tr>
<td>K-Ar</td>
<td>38.0 ± 1.5</td>
<td>Biotite (I)</td>
<td>Dacite</td>
<td>Rubio Peak Fm. (?)</td>
<td>Clemons, 1982</td>
</tr>
<tr>
<td>K-Ar</td>
<td>38.1 ± 2.0</td>
<td>Biotite (I)</td>
<td>Intermediate dike</td>
<td>Rubio Peak Fm. (?)</td>
<td>Clemons, 1979</td>
</tr>
<tr>
<td>U-Pb</td>
<td>*39.6 ± 0.5</td>
<td>Zircon (I)</td>
<td>Ash fall tuff</td>
<td>Palm Park Fm.</td>
<td>This study</td>
</tr>
<tr>
<td>Ar-Ar</td>
<td>40.2 ± 0.25</td>
<td>Hornblende (I)</td>
<td>Andesite</td>
<td>Rubio Peak Fm.</td>
<td>McMillan, 2004</td>
</tr>
<tr>
<td>U-Pb</td>
<td>*41.0 ± 0.6</td>
<td>Zircon (I)</td>
<td>Intermediate porphyry</td>
<td>Palm Park Fm.</td>
<td>This study</td>
</tr>
<tr>
<td>U-Pb</td>
<td>*41.0 ± 0.6</td>
<td>Zircon (I)</td>
<td>Intermediate ash flow</td>
<td>Palm Park Fm.</td>
<td>This study</td>
</tr>
<tr>
<td>U-Pb</td>
<td>41.0 ± 7.4</td>
<td>Whole rock</td>
<td>Porphyrytic basalt</td>
<td>None listed</td>
<td>Marvin et al., 1988</td>
</tr>
<tr>
<td>U-Pb</td>
<td>*41.3 ± 0.7</td>
<td>Zircon (I)</td>
<td>Intermediate flow (banded)</td>
<td>Palm Park Fm.</td>
<td>This study</td>
</tr>
<tr>
<td>U-Pb</td>
<td>*41.6 ± 0.7</td>
<td>Zircon (I)</td>
<td>Intermediate lava flow</td>
<td>Palm Park Fm.</td>
<td>This study</td>
</tr>
<tr>
<td>Ar-Ar</td>
<td>41.69 ± 0.12</td>
<td>Biotite (I)</td>
<td>Andesite</td>
<td>Rubio Peak Fm.</td>
<td>McMillan, 2004</td>
</tr>
<tr>
<td>Ar-Ar</td>
<td>41.78 ± 0.16</td>
<td>Hornblende (I)</td>
<td>Andesite</td>
<td>Rubio Peak Fm.</td>
<td>McMillan, 2004</td>
</tr>
<tr>
<td>K-Ar</td>
<td>42.2 ± 1.6</td>
<td>Biotite (I)</td>
<td>Andesite porphyry</td>
<td>Palm Park Fm</td>
<td>Clemons, 1979</td>
</tr>
<tr>
<td>Ar-Ar</td>
<td>42.37 ± 2.59</td>
<td>Hornblende (D)</td>
<td>Andesite lahar</td>
<td>Rubio Peak Fm.</td>
<td>McMillan, 2004</td>
</tr>
<tr>
<td>U-Pb</td>
<td>*42.8 ± 0.5</td>
<td>Zircon (I)</td>
<td>Intermediate lava flow</td>
<td>Orejon Andesite</td>
<td>This study</td>
</tr>
<tr>
<td>Ar-Ar</td>
<td>43.12 ± 0.19</td>
<td>Plagioclase</td>
<td>Intermediate dike</td>
<td>Palm Park Fm.</td>
<td>Ramos et al., this volume</td>
</tr>
<tr>
<td>U-Pb</td>
<td>*43.8 ± 0.4</td>
<td>Zircon (I)</td>
<td>Intermediate lava flow</td>
<td>Orejon Andesite</td>
<td>This study</td>
</tr>
<tr>
<td>U-Pb</td>
<td>*44.0 ± 1.5</td>
<td>Zircon (I)</td>
<td>Intermediate lava flow</td>
<td>Orejon Andesite</td>
<td>This study</td>
</tr>
<tr>
<td>U-Pb</td>
<td>44.215 ± 0.054</td>
<td>Zircon (I)</td>
<td>Intermediate flow</td>
<td>Orejon Andesite</td>
<td>Rioux et al., 2016</td>
</tr>
<tr>
<td>K-Ar</td>
<td>44.4 ± 1.6</td>
<td>Biotite (D)</td>
<td>Laharic tuff breccia</td>
<td>Palm Park Fm.</td>
<td>Hawley et al., 1975</td>
</tr>
<tr>
<td>K-Ar</td>
<td>44.7 ± 1.9</td>
<td>Biotite (D)</td>
<td>Dacite</td>
<td>Rubio Peak Fm. (?)</td>
<td>Clemons, 1982</td>
</tr>
<tr>
<td>K-Ar</td>
<td>44.8 ± 1.7</td>
<td>Biotite (I)</td>
<td>Andesite</td>
<td>None listed</td>
<td>Lamarre, 1974</td>
</tr>
<tr>
<td>U-Pb</td>
<td>*45.0 ± 0.7</td>
<td>Zircon (I)</td>
<td>Ash fall tuff</td>
<td>Palm Park Fm.</td>
<td>This study</td>
</tr>
<tr>
<td>Ar-Ar</td>
<td>46.3 ± 0.3</td>
<td>Hornblende (D)</td>
<td>Andesite clast (in lahar)</td>
<td>Rubio Peak Fm.</td>
<td>McMillan, 2004</td>
</tr>
</tbody>
</table>

*New ages from this study; (I) - Igneous; (D) - Detrital

Andesite, and Rubio Peak Formation from south-central New Mexico.

Palm Park Formation

The Palm Park Formation is exposed throughout south-central New Mexico where it crops out in the Doña Ana, Robledo, San Diego, Potrillo, and Caballo Mountains as well as in the Selden and Sleeping Lady Hills and Sierra de las Uvas (Figs. 1, 2). The Palm Park is characterized primarily by coarse- to fine-grained gray, tan, maroon, purple, and green volcaniclastic strata (e.g., lahar deposits with subordinate hyperconcentrated and fluvial sheetflow deposits), volcanic rocks (e.g., lava flows and tuffs), small-volume intrusions (e.g., sills, dikes, plugs, and stocks), and interbedded freshwater limestone and gypsum-bearing lacustrine strata (Kelley and Silver, 1952; Seager et al., 1971; Seager and Hawley, 1973; Seager, 1975; Seager et al., 1975; Seager et al., 1976; Clemons, 1979; Seager, 1981; Mack et al., 1998; Seager et al., 2008). In the Las Cruces area, the Palm Park Formation has been documented to be relatively thinner where it overlies the former Laramide topographic high of the Rio Grande uplift and thicker along the south-tilted flank (Figs. 1, 2; Mack et al., 1998).

Prior to this study, there were only a few published K-Ar ages for the Palm Park Formation, including an age of 44.4±1.6 Ma determined from a detrital clast of tuff breccia collected from a lahar deposit (Hawley et al., 1975) and an age of 42.2±1.6 Ma determined from an andesite porphyry (Clemons, 1979). An intermediate dike in the Doña Ana Mountains has a 40Ar/39Ar date of 43.12±0.19 Ma (Ramos and Heizler, this volume). Some of the youngest parts of the Palm Park are exposed in the southern Caballo Mountains where late early Chadronian (~36.5–35.7 Ma) vertebrate fossils have been reported (Figs. 1, 3; Lucas, 2015). These fossils include tortoise (aff. Stylemys), hyaenodontid creodont Hyaenodon horridus, rhinoceros cf. Hyracodon sp., horse Mesohippus cf. M. texanus, and oreodont Merycoidodon presidioensis (Lucas and Williamson, 1993; Lucas et al., 1997; Lucas, 2015). This late early Chadronian age range corresponds with the oldest report-
ed $^{40}\text{Ar}/^{39}\text{Ar}$ age of 35.69 Ma age from the overlying Bell Top Formation (McIntosh et al., 1991).

Orejon Andesite

The Orejon Andesite is exposed in the southern San Andres Mountains (at Hardscrabble Hill) and in the central and western parts of the Organ Mountains (Fig. 1), where it consists primarily of coarse-grained gray, purple, maroon, and faint blue intermediate volcaniclastic strata (dominantly massive, matrix-supported conglomerate) and volcanic rocks (primarily intermediate lava flows and rare siliceous tuffs) (Glover, 1975; Seager, 1981). There are no complete base-to-top exposures of the Orejon Andesite exposed but the maximum exposed thickness is estimated at ~360 m based on map relationships (Seager, 1981).

Prior to this study, there was only one published U-Pb zircon age of 44.215±0.054 Ma reported from an intermediate flow that occurs in the stratigraphically highest part of the Orejon Andesite near the mouth of Fillmore canyon in the western Organ Mountains (Rioux et al., 2016). Near this same locality (and directly up stratigraphic section), $^{40}\text{Ar}/^{39}\text{Ar}$ ages of 36.45±0.08, 36.23±0.14, and 36.0±0.16 Ma (Zimmerer and McIntosh, 2013), and U-Pb zircon ages of 36.441±0.020, 36.259±0.016, and 36.215±0.016 Ma (Rioux et al., 2016) have been reported from rocks that make up the oldest parts of the Organ caldera complex. The nature of the contact between the Orejon Andesite and overlying ignimbrites of the Organ caldera appears to be unconformable suggesting prolonged eruptive hiatus between these two units (Fig. 3). At present, there is no biostratigraphic constraint from the Orejon Andesite and this unit is considered roughly coeval with the oldest parts of the Palm Park Formation.

Cleofas Andesite

The Cleofas Andesite crops out in the central part of the Doña Ana Mountains (Fig. 1) and consists primarily of andesite porphyry deposits that range in color from gray, tan, pale purple, dark red, to faint blue in color and exhibit occasion flow-banded textures (Seager et al., 1976; Seager et al., 2008). The thickness of the Cleofas Andesite has yet to be determined and no complete section of the unit is exposed, thus the upper and lower stratigraphic relationship between this unit and the Palm Park Formation is unknown. However, in some localities the Cleofas Andesite appears to be interbedded with volcaniclastic lahars deposits of the Palm Park Formation and flow-banded clasts of Cleofas Andesite can be observed in lahars beds of the Palm Park (Seager et al., 1976). The Cleofas Andesite is considered to be an intermediate, volcanic-dominated member of the Palm Park Formation (W.R. Seager, pers. commun., 2017).

One K-Ar age of 35.9±1.6 Ma has been previously reported from the Cleofas Andesite (Table 1; Clemons, 1979). Stratigraphic relationships in the Doña Ana Mountains support an interpretation where the Cleofas Andesite is likely age equivalent to the middle and uppermost parts of the Palm Park Formation (Seager et al., 2008). $^{40}\text{Ar}/^{39}\text{Ar}$ age ages from the oldest parts of the overlying Doña Ana caldera, including a 36.04±0.01 Ma age from the Doña Ana Rhyolite and 35.98±0.02 Ma Goat Mountain Rhyolite (Ramos and Heizler, this volume) support an uppermost age limit of ~36 Ma for the Cleofas Andesite and Palm Park Formation (Fig. 3).

Rubio Peak Formation

The Rubio Peak Formation in south-central New Mexico crops out in the Good Sight Mountains and Uvas Valley as well as the eastern Black and Cooke’s Ranges (Fig. 1), where it is made up primarily of coarse- to fine-grained volcaniclastic strata (e.g., lahar, hyperconcentrated, and fluvial sheetflow deposits) and subordinate volcanic rocks (e.g., lava flows, tuffs, dikes, plugs, and stocks; Clemons, 1979). The maximum thickness of the Rubio Peak Formation in the Good Sight Mountains and Cooke’s Range has been estimated to be ~1000 m (Clemons, 1979; Elston, 1957). Alluvial facies of the Rubio Peak and Palm Park Formation are thought to be interbedded in the Good Sight Mountains and Uvas Valley, indicating the Palm Park and Rubio Peak Formation are correlative but likely derived from different volcanic vents during the same period of time (Elston, 1957; Clemons, 1979).

There are a number of K-Ar and $^{40}\text{Ar}/^{39}\text{Ar}$ ages that have been reported previously from the Rubio Peak Formation in south-central New Mexico that fall within a range of 46.3±0.3 Ma to 36.4±2.3 Ma (Table 1; Marvin and Cole, 1978; Clemons, 1979; McMillan, 2004). The middle and upper part of this age range is also partly supported biostratigraphically by occurrences of Duchesnean (~40–37 Ma) and late early Chadronian (~36.5–35.7 Ma) vertebrate mammal fossils in the southern Black Range (Lucas, 2015). These fossils include a brontothere jaw Duchesneodus uintensis, rodent Jaywilsonomys ojinangaensis, oromerycid Montanatylus matthewi, perissodactyl (possibly a brontotherium), and a possible hypertragulid artiodactyl (Lucas, 2015). These fossil ages together with the $^{40}\text{Ar}/^{39}\text{Ar}$ age of 35.69 Ma for Ash Flow Tuff 3 of the Bell Top Formation (McIntosh et al., 1991) further support an upper bounding age of the Rubio Peak Formation as late Eocene. Existing radiometric ages from the Rubio Peak Formation, together with late early Chadronian vertebrate fossils within the Rubio Peak and the oldest radiometric age from the overlying Bell Top Formation (McIntosh et al., 1991), support an age range for the Rubio Peak between 46–36 Ma.

METHODS

A total of nine igneous zircon samples were collected from parts of the Palm Park Formation (N=6) and Orejon Andesite (N=3) in south-central New Mexico for determination of U-Pb zircon ages (n=247 analyses) (Figs. 1, 3). Table 2 provides a summary of all sample localities. Zircon crystals were extracted from samples at New Mexico State University using standard heavy-mineral separation techniques (i.e., utilizing a Chipmunk jaw crushe, Bico pulverizer, 30-micron mesh sieve, Gemini table, Frantz separator, sodium polytungstate,
and methylene iodide). Zircons were then placed into a one-inch epoxy mount with zircon standards R33, Sri Lanka (SL), and FC at the Arizona Laserchron Center in Tucson, Arizona. Zircon mounts were sanded down to a depth of ~20 microns, polished, imaged, and cleaned prior to analysis. Cathodoluminescence images were acquired to assist in the identification of locations for ablation pits at the cores of zircons.

All U-Pb analyses of igneous zircons were conducted by laser ablation inductively coupled mass spectrometry (LA-ICPMS) at the Arizona LaserChron Center. Data produced from zircon analyses was imported in an Excel spreadsheet (“agecalc”), which corrects data, calculates ages, uncertainties, and error correlations (Gehrels et al., 2008). In “agecalc” raw data is first corrected for background intensities and excess 204 Hg that is indicated by above-background 202 Hg. Next, for each analysis, the errors in determining 206 Pb/238 U and 206 Pb/204 Pb result in the application of a measurement error of ~1-2% (at 2σ) in the 206 Pb/238 U age. The errors in measurement of 206 Pb/204 Pb and 206 Pb/203 Pb also result in ~1-2% (at 2σ) uncertainty in age for grains that are >1.0 Ga, but are substantially larger for younger grains due to low intensity of the 207 Pb signal. For most analyses, the cross-over in precision of 206 Pb/238 U and 206 Pb/202 Pb ages occurs at ~1.2 Ga. Correction of common lead is done by using the Hg-corrected 206 Pb and assuming an initial Pb composition from Stacey and Kramers, (1975). Uncertainties of 1.5 for 206 Pb/204 Pb and 0.3 for 206 Pb/203 Pb are applied to these compositional values based on variation of Pb composition in modern crustal rocks. Inter-element fractionation of Pb/U is generally ~5%, whereas apparent fractionation of Pb isotopes is generally <0.2%. Analysis of standards is used to correct for this fractionation. The uncertainty resulting from the calibration correction is generally 1-2% (2σ) for both 206 Pb/207 Pb and 206 Pb/238 U ages.

The data from each sample analysis was filtered then applied to a weighted mean calculation, which weights each zircon analyzed according to the square of its uncertainty and generates a final age with uncertainty and mean square of weighted deviates (MSWD). For the purposes of this study (and depending on zircon yield from each sample), 30-50 crystals were analyzed from each sample to increase precision (Fig. 4).

RESULTS

Our study resulted in one new age from the Palm Park Formation in the Sierra de las Uvas (Bell Top mountain locality), three new ages from the Robledo Mountains (Apache and Faulkner canyons), two new ages from the Doña Ana Mountains (Cleofas Canyon), and three new ages from the Orejon Andesite (Organ Mountains (Fillmore Canyon) (Figs. 1, 3, 4). All samples were collected from discrete stratigraphic horizons in the Palm Park Formation and Orejone Andesite (Figs. 3, 4). Ages are presented below (at 2σ error) in the context of the four geographic field localities in this study. A summary of all geochronologic data collected from this study can be found in the online Data Repository (http://nmgs.nmt.edu/repository).

Sample PALMP(RM/AC)-02 yielded an age of 45.0±0.7 Ma (n=8 of 31; MSWD=1.80; Fig. 4, Table 1) and was collected from an ash fall-tuff that stratigraphically underlies limestone and gypsum-bearing strata that make up the lower part of the Palm Park Formation in the Robledo Mountains (near Apache Canyon; Fig. 5A). This is one of the oldest reported ages from the Palm Park Formation in south-central New Mexico (Table 1). Of the 31 zircon crystals analyzed from this sample, 23 yielded Mesopaleoproterozoic ages that were not used for age determination. Sample PALMP(RB/FC)-08 yielded an age of 41.0±0.6 Ma (n=30 of 34; MSWD=0.46; Fig. 4, Table 1) and PALMP(RB/FC)-01 yielded a nearly identical age of 41.0±0.6 Ma (n=32 of 35; MSWD=0.24; Fig. 4, Table 1). PALMP(RB/FC)-08 was collected from and block-and-ash flow from the Faulkner Canyon field locality (Fig. 5B). Of the 30 zircon crystals analyzed from this sample, 4 yielded Mesopaleoproterozoic ages that were not used for age determination. PALMP(RB/FC)-01 was collected from an intermediate porphyry in the Palm Park Formation in Faulkner Canyon of the northern Robledo Mountains. This sample contained 2 zircon crystals that yielded Mesopaleoproterozoic ages and 1 crystal that yielded a Jurassic age.

Samples OREJON(OR/FL)-03, OREJON(OR/FL)-02, and OREJON(OR/FL)-01 yielded ages of 44.0±1.5 (Fig. 4, Table 1; n=18 of 23; MSWD=0.33), 43.8±0.4 (Fig. 4, Table 1; n=30...
U-Pb Geochronology of Middle–Late Eocene Palm Park Formation and Orejon Andesite

There were 4 zircon crystals that yielded Mesoproterozoic ages that were not used for age determination. Sample PALMP(DA/CC)-05 and PALMP(DA/CC)-01 yielded ages of 41.6±0.7 Ma (Fig. 4, Table 1; n=31 of 34; MSWD=0.56) and 41.3±0.7 Ma (Fig. 4, Table 1; n=38 of 49; MSWD=0.60), respectively and were collected from an intermediate flow and banded flow in the Palm Park Formation that crop out in Cleofas Canyon of the western Doña Ana Mountains (Fig. 5D). Of the 31 zircon crystals analyzed from PALMP(DA/CC)-05, 2 yielded Mesoproterozoic ages that were not used for age determination. Sample PALMP(DA/CC)-01 contained 9 zircon crystals of Meso- and Paleoproterozoic age that were not included in age determination.

Sample PALM(SU/BT)-01 yielded an age of 39.6±0.5 Ma (Fig. 4, Table 1; n=40 of 47; MSWD=0.41) and was collected from an ash-fall tuff near the top of the Palm Park Formation in the Bell Top Mountain locality of the eastern Sierra de las Uvas (Fig. 5E). This is the youngest reported age from the Palm Park Formation in south-central New Mexico (Table 1). This sample contained 4 zircon crystals that yielded Mesoproterozoic ages and 1 crystal that yielded a Neoproterozoic age, and 1 crystal with a Cretaceous age.

DISCUSSION

New U-Pb zircon ages from the Palm Park Formation and Orejon Andesite constrain the duration of intermediate volcanism and sedimentation that took place after Laramide deformation and prior to the onset of the Rio Grande rift at ~36 Ma in south-central New Mexico. U-Pb ages from this study combined with existing ages from the Palm Park Formation (including the Cleofas Andesite) in the Doña Ana, Organ, San Andres, Caballo, Robledo, Potrillo, and Sierra de las Uvas Mountains (Table 2), and vertebrate mammal fossil occurrences from the Palm Park Formation in the southern Caballo Mountains (e.g., Lucas and Williamson, 1993; Lucas et al., 1997; Lucas, 2015) help bracket this phase of volcanism and sedimentation to a ~10 my period during the middle–late Eocene (~46–36 Ma; Figs. 3, 6). A near-continuous, coeval record of intermediate volcanism and volcaniclastic sedimentation is recorded in middle–late Eocene rocks of the Rubio Peak Formation in the Goodsgight Mountains, Black Range and Cooke’s Range in south-central New Mexico (Fig. 6; e.g., Elston, 1957; Clemons, 1979; McMillan, 2004).

It is important to note that although this study helps with constraining the duration of middle–late Eocene volcanism and volcaniclastic sedimentation in south-central New Mexico, the age, location, and number of individual stratovolcano vents that sourced the Palm Park Formation and equivalent units remains unclear. It is possible that these intermediate rocks were sourced from a series of discrete volcanic vents that may have ranged in age as well proximity to the Las Cruces area (e.g., Ramos et al., this volume). The latter is especially true with ash-fall tuffs that could have been far-traveled from vent sources outside of present-day southern New Mexico. Thus, the age of these rocks in the Las Cruces area could differ in age.

Sample Names and Localities

<table>
<thead>
<tr>
<th>Sample Name</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>PALMP(SU/BT)-01</td>
<td>Sierra de Las Uvas Mtns.</td>
</tr>
<tr>
<td>PALMP(RB/FC)-08</td>
<td>Bell Top Mountain</td>
</tr>
<tr>
<td>PALMP(RB/FC)-01</td>
<td>Fillmore Canyon</td>
</tr>
<tr>
<td>PALMP(DA/CC)-01</td>
<td>Doña Ana Mtns.</td>
</tr>
<tr>
<td>PALMP(DA/CC)-05</td>
<td>Robledo Mtns.</td>
</tr>
<tr>
<td>PALMP(DA/CC)-03</td>
<td>Cueva Tuff</td>
</tr>
<tr>
<td>PALMP(DA/CC)-03</td>
<td>Cleofas Canyon</td>
</tr>
<tr>
<td>PALMP(DA/CC)-03</td>
<td>Doña Ana Mtns.</td>
</tr>
<tr>
<td>PALMP(DA/CC)-03</td>
<td>Organ Mtns.</td>
</tr>
<tr>
<td>PALMP(DA/CC)-03</td>
<td>Fillmore Canyon</td>
</tr>
<tr>
<td>PALMP(DA/CC)-03</td>
<td>Apache Canyon</td>
</tr>
</tbody>
</table>

FIGURE 4. Summary of new U-Pb igneous zircon ages from the Palm Park Formation and Orejon Andesite in south-central New Mexico. Note samples are ordered from oldest (base of figure) to youngest (top of figure).

![Graph showing U-Pb zircon ages](image-url)
FIGURE 5. Field photos of the Palm Park Formation and Orejon Andesite in south-central New Mexico. A) Interbedded volcanic (ash fall) and volcaniclastic (lahar) strata of Palm Park Formation from the Apache Canyon locality in the northern Robledo Mountains. Age from ash-fall tuff at this locality represents one of the oldest reported ages from the Palm Park Formation. Geologist for scale. B) Block-and-ash flow deposit with embayed (melted) clast margins from the Faulkner Canyon locality in the northern Robledo Mountains. Rock hammer for scale. C) Panorama view to the east of the Organ Mountains and Fillmore Canyon field locality. Note late Eocene–Oligocene plutonic rocks (left) and volcanic rocks (right) of the Organ caldera complex including oldest Cueva Tuff unit. Three new ages are reported here from lava flows in the Orejon Andesite (foreground). D) Interbedded volcanic (lava flow and block-and-ash flow) and volcaniclastic (lahar) strata from the Cleofas Canyon locality in the west-central Doña Ana Mountains. White circle denotes 1.5-m Jacob Staff for scale. E) View to the northwest of the uppermost Palm Park Formation (lower) and overlying Bell Top Formation in the Bell Top mountain locality of the Sierra de las Uvas. White dashed line denoted location of contact between the Palm Park Formation and Bell Top Formation. Black dash line denotes location of minor fault and corresponding offset. Age from ash-flow tuff at this locality represents the youngest reported age from the Palm Park Formation.
slightly compared to the Rubio Peak Formation to the west and northwest and possibly with other Palm Park localities to the north (e.g., Caballo Mountains). Future work aimed at isolating the location and ages of stratovolcano vent sources should promote a better understanding of what the middle–late Eocene volcanic landscape may have looked like in southern New Mexico just prior to the onset of the Rio Grande rift.

Although a much more regional study is needed to better understand the plate-scale mechanism that drove Eocene magmatism throughout the southwestern U.S., it is worth discussing our new ages in the context of early–middle Eocene flat slab subduction and evolution of accompanying mantle wedge and the subsequent onset of bimodal volcanism and initiation of the Rio Grande rift. It is generally accepted that flat slab subduction associated with the Laramide orogeny continued through much of the early–middle Eocene until at least ca. 45 Ma when subduction began to terminated and the Farallon slab underwent rollback, delamination, and eventual foundering into the asthenosphere (e.g., Coney and Reynolds, 1977; Humphreys, 1995, 2009; Dickinson, 2009). The synorogenic Love Ranch Formation and overlying, post orogenic rocks of the Palm Park Formation, Orejon Andesite, and equivalent rocks summarized in this study preserve the stratigraphic record of this transition in southern New Mexico (e.g., Seager, 2005).

CONCLUSIONS

Although the exact timing of cessation of Laramide orogenesis and subsequent magmatism associated with slab foundering and asthenospheric upwelling likely varied throughout the southwestern U.S., we interpret middle–late Eocene intermediate volcanic rocks for the Palm Park Formation, Orejon Andesite, and equivalent strata to represent the first phase of post-orogenic magmatism associated with upper-mantle sources during initial foundering of the Farallon plate beneath New Mexico. At present, it is unclear whether this magmatism initiated prior to ~45 Ma due largely to the fact that the stratigraphic base of the Palm Park Formation has yet to be identified in southern New Mexico. It is also has yet to be determined how this phase of intermediate volcanism in southern New Mexico transitioned into latest Eocene–Oligocene bimodal volcanism and onset of the Rio Grande rift. Future work focused on age-equivalent rocks throughout the southwestern U.S. should promote a better understanding on the lithosphere-scale mechanisms that were driving mid–late Eocene magmatism just after Laramide orogenesis.

ACKNOWLEDGMENTS

Results from this study were part of a M.S. project completed by Ryan Creitz at New Mexico State University in August of 2017. Financial support for this project was provided in part...
REFERENCES

Creitz, R.H., 2017, Sedimentology, stratigraphy, and geochronology from middle–late Eocene volcanic and volcanioclastic strata of the Palm Park Formation and Orejon Andesite, south-central New Mexico [M.S. Thesis]: Las Cruces, New Mexico State University, 183 p.

Kelley, V.C., and Silver, C., 1952, Geology of the Caballo Mountains: With special reference to regional stratigraphy and structure and to mineral resources, including oil and gas: Albuquerque, University of New Mexico Press, New Mexico University Publications in Geology, no. 4, 286 p.

New Mexico Bureau of Geology and Mineral Resources, 2003, Geologic Map of New Mexico, scale 1:500,000.
Ramos, F.C., and Heizler, M.T., this volume, Age relationships of igneous rocks in the Doña Ana Mountains: New Mexico Geological Society, Guidebook 69.

Supplemental data can be found at http://nmgs.nmsu.edu/repository/index.cfm?rid=2018004
A javelina crossing the road below Leasburg Dam. Photograph by Peter A. Scholle.