Baculites Baculus Meek and Hayden, 1861 (Earliest Maastrichtian) from the Uppermost Pierre Shale in the Raton basin of Northeastern New Mexico and its Significance

Paul L. Sealey and Spencer G. Lucas
2019, pp. 73-80. https://doi.org/10.56577/FFC-70.73

in:
Geology of the Raton-Clayton Area, Ramos, Frank; Zimmerer, Matthew J.; Zeigler, Kate; Ulmer-Scholle, Dana, New Mexico Geological Society 70th Annual Fall Field Conference Guidebook, 168 p. https://doi.org/10.56577/FFC-70

This is one of many related papers that were included in the 2019 NMGS Fall Field Conference Guidebook.

Annual NMGS Fall Field Conference Guidebooks

Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico.

Free Downloads

NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, and other selected content are available only in print for recent guidebooks.

Copyright Information

Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. No material from the NMGS website, or printed and electronic publications, may be reprinted or redistributed without NMGS permission. Contact us for permission to reprint portions of any of our publications.

One printed copy of any materials from the NMGS website or our print and electronic publications may be made for individual use without our permission. Teachers and students may make unlimited copies for educational use. Any other use of these materials requires explicit permission.
This page is intentionally left blank to maintain order of facing pages.
**BACULITES BACULUS MEEK AND HAYDEN, 1861 (EARLIEST MAASTRICHTIAN) FROM THE UPPERMOST PIERRE SHALE IN THE RATON BASIN OF NORTHEASTERN NEW MEXICO AND ITS SIGNIFICANCE**

PAUL L. SEALEY AND SPENCER G. LUCAS

New Mexico Museum of Natural History and Science, 1801 Mountain Road, NW, Albuquerque, NM 87104

**ABSTRACT** — We document the ammonite *Baculites baculus* MEEK and Hayden, 1861 from the uppermost part of the Pierre Shale (22.5 m below the base of the Trinidad Sandstone) west of Raton in northeastern New Mexico. *B. baculus* was also collected from the upper Pierre, 80 km southwest of Raton near Cimarron, about 40 m below the base of the Trinidad Sandstone. The highest ammonite zone previously reported from northeastern New Mexico was the upper Campanian *Baculites reesidei* Zone, and the earliest Maastrichtian *B. baculus* Zone is three ammonite zones higher. *B. baculus* in the uppermost Pierre Shale thus places the Campanian-Maastrichtian stage boundary at the base of that zone in the uppermost Pierre and demonstrates that the Pierre Seaway regressed from northeastern New Mexico later than previously thought.

**INTRODUCTION**

In the Raton Basin of northeastern New Mexico, the Upper Cretaceous Pierre Shale consists of marine deposits of the Western Interior Seaway during its final regression from the state. Cobban (1976) reported indications of 12 ammonite zones in the Pierre Shale in northeastern New Mexico, listing the ammonites and inoceramids that are the most useful zone indicators. The highest zone reported by Cobban (1976) and Flores (1987) is the upper Campanian *Baculites reesidei* Zone. This zone was inferred by the occurrence of the bivalve *Inoceramus oblongus* Meek, 1871 west of Cimarron (Cobban, 1976) and the ammonite *Hoploscaphites nodosus* (Owen, 1852) 30–45 m below the top of the Pierre Shale near Raton (Flores et al., 1985; Flores, 1987).

Lee (1917) also reported *Scaphites nodosus* (*H. nodosus*) about 15 m below the top of the Pierre Shale near Raton. These latter reports of *H. nodosus* from Raton suggest that the uppermost Pierre Shale is no younger than the *B. reesidei-jenseni* Zones in this area based on taxonomic revisions of the “*nodosus group*” of scaphitid ammonites (Landman et al., 2010). However, these scaphites instead may belong to the early Maastrichtian *H. cf. H. sargklofak* Landman, Kennedy, and Larson, 2015 group, which is not found from the *B. baculus* through the *B. clinolobatus* zones in the Western Interior (Landman et al., 2015) and at a similar stratigraphic position only a few kilometers farther north in the Colorado portion of the Raton Basin (Berry, 2017). They could also be *H. plenus* (Meek and Hayden, 1860) or *H. criptonodosus* (Riccardi, 1983), which occur in the lowermost Maastrichtian *B. baculus* Zone (Larson et al., 1997).

Here, we document the *Baculites baculus* Zone, which is three ammonite zones higher than the *B. reesidei* Zone and supports the inference that scaphitid ammonites from the uppermost Pierre previously attributed to the “*nodosus group*” actually belong to a younger group of scaphitid ammonites. The purpose of the present report is to describe, illustrate and place in a measured stratigraphic section *B. baculus* from the Pierre Shale in the Raton Basin of northeastern New Mexico and to discuss its significance to our understanding of the timing of the regression of the Western Interior Seaway from northeastern New Mexico. In this paper, NMMNH refers to the New Mexico Museum of Natural History and Science, Albuquerque. All dimensions of fossils are given in millimeters.

**STRATIGRAPHIC CONTEXT**

In the Raton Basin of northeastern New Mexico-southeastern Colorado, the Upper Cretaceous Pierre Shale is 700 m thick (Johnson and Wood, 1956). In northeastern New Mexico, most of this thick stratigraphic unit is in the subsurface or intermittently exposed on the southern High Plains south and southeast of Raton. However, west and southwest of Raton, as far south as Cimarron, the upper ~200 m of the Pierre Shale is exceptionally well exposed in canyons and along the escarpment that borders the western edge of the High Plains.

Along that escarpment, just north of NM–555 west of Raton, about 42 m of the uppermost Pierre Shale are well exposed and fossiliferous. This section (Fig. 1), as elsewhere in the Raton Basin, exposes two distinct facies of the upper Pierre Shale: (1) a lower, offshore marine shale facies, that consists of gray and dark gray shale with a few thin sandstone beds and bentonites as well as horizons of yellowish brown limestone concretions; and (2) an overlying, lower shoreface facies of siltstone and sandy shale with several interbeds of laminar or crossbedded sandstone. Crossbedded sandstone at the base of the Upper Cretaceous Trinidad Sandstone conformably overlies the lower shoreface facies of the Pierre Shale (Fig. 1).
In the offshore marine facies north of NM–555, fossils of ammonites and other mollusks (mostly inoceramid bivalves) are present in the limestone concretion intervals. In our section (Fig. 1), there are four stratigraphic levels with fossils (ascending order):

1. Bed 14 yielded inoceramid bivalves (locality 12056), the nautiloid *Eutrephoceras montanaensis* (locality 12230), and the ammonite *Hoploscaphites* (locality 12258).

2. Bed 18 yielded the inoceramid *Cataceramus? barabini*, *Hoploscaphites* and an unidentified heteromorphic ammonoid (locality 12255).


4. A concretion level 1 m below the top of bed 25 yielded *Hoploscaphites* (locality 12256).

Particularly significant is the occurrence of *Baculites baculus* documented here, 22.5 m below the base of the Trinidad Sandstone, as it indicates an early Maastrichtian age (see later discussion).

*Baculites baculus* is also present in the upper Pierre Shale at Cerrososo Canyon, 80 km southwest of Raton, and we also document that record here. However, our stratigraphic studies at Cerrososo Canyon are not complete, so we only estimate its stratigraphic distance below the base of the Trinidad Sandstone. This distance is ~40 m, which is to be expected, as all time lines (in this case base of the Maastrichtian) in the upper Pierre-Trinidad stratigraphic interval should climb stratigraphically to the northeast as that is the direction in which the Western Interior Seaway regressed during the latest Cretaceous.

**AMMONITE ZONES**

Cobban (1976) reported 12 ammonite zones in the Pierre Shale in northeastern New Mexico. We also recognize these zones and one additional zone, the *Baculites baculus* Zone (Table 1). These ammonite zones contain other index mollusks including other ammonites, nautiloids, bivalves and gastropods (Table 2).

**SYSTEMATIC PALEONTOLOGY**

*Phylum MOLLUSCA*

*Class CEPHALOPODA* Cuvier, 1797

*Order AMMONOIDEA* Zittel, 1884

*Suborder AMMONITINA* Hyatt, 1889

*Family BACULITIDAE* Gill, 1871

*Genus BACULITES* Lamarck, 1799

*Baculites baculus* Meek and Hayden, 1861

**Figures 2-3**

1861 *Baculites baculus* Meek and Hayden, p. 445.

1876 *Baculites ovatus* var. *baculus* Meek and Hayden; Meek, p. 397, text-figs. 51, 52.

1873 *Baculites baculus* Meek and Hayden; Gill and Cobban, p. 10, text-figs. 3d, 7a.

1983 *Baculites baculus* Meek and Hayden; Riccardi, pl. 26, figs. 6-10.

1993 *Baculites baculus* Meek and Hayden, 1861; Kennedy, p. 110, pl. 4, figs. 10, 20, 21.

1997 *Baculites baculus* Meek and Hayden, 1861; Larson et al., p. 34, 38, unnumbered figs.

**Holotype:** The holotype is from the “Fox Hills Sandstone near Glenrock, Wyoming” and is the original of Meek (1876, text-figs. 51, 52).

**Referred Material:** NMMNH locality 12043: P-80460, large, incomplete adult; NMMNH locality 12251: P-80462, partial shell; NMMNH locality 12252: P-80463, partial shell.
**Description:** NMMNH P-80460 from locality 12043 is a moderately preserved, large, incomplete, adult shell of *Baculites baculus* in two pieces, slightly flattened on one lateral side (Fig. 2). The smaller piece, which is all phragmocone, has a stoutly ovate cross section with a flattened dorsum and broadly rounded venter. The venter and dorsum are smooth. The flanks bear moderately strong, broad, crescentic ribs (Kennedy, 1993, p. 110). The poorly-preserved suture has simple, broad, rectilinear elements (Kennedy, 1993, p. 110). The larger piece, mostly body chamber, has a length of 215 mm and a maximum diameter of 65.3 mm. The cross section is stout and almost quadrate, with the venter a little narrower than the dorsum. The flanks bear low, but fairly strong, broad, arcuate undulations that start at the venter and cross the dorsum as faint convex striations on the shell layer.

**Remarks:** The NMMNH specimens of *Baculites baculus* are most similar to their smaller, presumed ancestor *B. undatus* Stephenson, 1941, which occurs much lower in the section with
TABLE 2. Associated fauna by ammonite zone and locality in the Pierre Shale in the Raton Basin, New Mexico. Locality numbers with an L prefix = NMMNH localities and those with a D prefix or no prefix = USGS localities.

<table>
<thead>
<tr>
<th>Ammonite Zone</th>
<th>Locality nos.</th>
<th>Specimens</th>
</tr>
</thead>
<tbody>
<tr>
<td>Scaphites hippocrepis III</td>
<td>8352, D4835, D4836, D3647</td>
<td>Cataceramus balticus (Böhm, 1907), Glyptoxoceras sp., Baculites sp., Scaphites (Scaphites) hippocrepis (DeKay, 1828) III Cobban, 1969</td>
</tr>
<tr>
<td>Baculites asperiformis</td>
<td>D4838</td>
<td>Inoceramids, Glyptoxoceras?, Baculites asperiformis Meek, 1876</td>
</tr>
<tr>
<td>Baculites perplexus</td>
<td>D3653, D7017</td>
<td>Cataceramus?, Baculites perplexus Cobban, 1962a</td>
</tr>
<tr>
<td>Baculites gregoryensis</td>
<td>D6030</td>
<td>Inoceramids, Eutrephoceras sp., Placenticeras sp., Didymoceras sp., Baculites gregoryensis Cobban, 1952</td>
</tr>
<tr>
<td>Baculites scotti</td>
<td>D4814, D4815, D7488, D7489, D7492</td>
<td>Cymbophora sp., “Inoceramus” convexus Hall and Meek, 1855, Drepanochilus sp., Baculites scotti Cobban, 1958</td>
</tr>
<tr>
<td>Didymoceras nebrascense</td>
<td>D4817, D7012</td>
<td>“Inoceramus” aff. “I.” convexus Hall and Meek, 1855, Didymoceras nebrascense (Meek and Hayden, 1856)</td>
</tr>
<tr>
<td>Exiteloceras jenneyi</td>
<td>5731, D4572, D4820, D11609, L-12047, L-12055</td>
<td>Inoceramids, Eutrephoceras sp., Placenticeras meeki Böhm, 1898, Exiteloceras jenneyi jenneyi (Whitfield, 1877), Baculites crickmayi Williams, 1930, Baculites rugosus Cobban, 1962b</td>
</tr>
<tr>
<td>Didymoceras cheyennense</td>
<td>5594, D11602, D4825</td>
<td>“Inoceramus” sp., Eutrephoceras sp., Didymoceras cheyennense (Meek and Hayden, 1856), Baculites rugosus Cobban, 1962b (late form), Baculites corrugatus Elias, 1933, Hoploscaphites nodosus (Owen, 1852), Hoploscaphites brevis (Meek, 1876)</td>
</tr>
<tr>
<td>Baculites reesidei?</td>
<td>D4830</td>
<td>“Inoceramus” oblongus Meek, 1871, Placenticeras costatun Hyatt, 1903</td>
</tr>
</tbody>
</table>

a range of 45-61 m (150-200 ft) below the top of the Pierre Shale west of Raton and 79-88 m (260-290 ft) below the top west of Cimarron (Cobban, 1976). Likewise, at Berwind Canyon in south-central Colorado, B. undatus occurs within the lowest exposures of the Pierre Shale in the canyon (Berry, 2016; Sealey et al., 2019, this volume). B. grandis Hall and Meek, 1855, the descendant of B. baculus and the index taxon of the next higher ammonite zone, is larger and has an almost trigonal cross section. Additionally, B. grandis is known only from the northern part of the Raton Basin, where it has been collected from three localities in south-central Colorado (Berry, 2016, 2017).

**Occurrence:** Lowermost Maastrichtian Baculites baculus Zone.

**Discussion:**

Sealey and Lucas (2018) first reported the occurrence of Baculites baculus in the uppermost Pierre Shale near Raton in an abstract. B. baculus has been reported from the Pierre Shale in Colorado, Wyoming and from the Craie phosphatée de Cuesmes in Belgium (Gill and Cobban, 1966; Kennedy, 1993; Berry, 2010, 2016, 2018). Riccardi (1983) documented B. baculus from the Bearpaw Formation in Saskatchewan. Larson et al. (1997) reported B. baculus from Colorado to eastern Montana and farther north in Alberta and Saskatchewan. B. baculus has also been reported from the Pierre Shale at Berwind Canyon in south-central Colorado (Berry, 2010, 2016; Sealey et al., 2019, this volume).
FIGURE 2. *Baculites baculus* Meek and Hayden, 1861 from the uppermost Pierre Shale west of Raton in York Canyon. A-E (in two parts), A) lateral, B) ventral, C) dorsal, D) adoral cross section of body chamber, and E) adoral cross section of phragmocone, NMMNH P-80460 from locality 12043. Scale bars equal 2 cm.
FIGURE 3. *Baculites baculus* Meek and Hayden, 1861 from the upper Pierre Shale 80 km southwest of Raton in Cerrososo Canyon. **A-D**, \(A\) lateral, \(B\) ventral, \(C\) dorsal and \(D\) adapical cross sectional views, NMMNH P-80462 from locality 12251; **E-H**, \(E\) lateral, \(F\) ventral, \(G\) dorsal and \(H\) cross sectional views, NMMNH P-80463 from locality 12252. Scale bars equal 2 cm.
Using palynostratigraphy, Tschoudy (1973) placed the Campanian-Maastrichtian stage boundary near the top of the Vermejo Formation in northeastern New Mexico. However, because the Baculites baculus Zone is in the uppermost Pierre Shale west of Raton, this places the Campanian-Maastrichtian stage boundary at the base of that zone, stratigraphically well below the Vermejo Formation. The boundary is further constrained by the occurrence of a juvenile of Baculites cf. B. eliasi within the B. baculus Zone in the uppermost Pierre there. B. eliasi and B. baculus co-occur near the base of the B. baculus Zone in the Western Interior (Gill and Cobban, 1966; Larson et al., 1997, p. 144; Berry, 2016, p. 76).

Importantly, we also collected the index inoceramid Cataceramus? barabini (Morton, 1834) from the lower Trinidad at Vermejo Park. As C. barabini is characteristic of the B. eliasi-B. baculus zones in the Western Interior (Walaszczyk et al., 2001), this presumably means that the B. baculus zone extends locally into the Trinidad Sandstone. Likewise, Lee (1917) reported this enigmatic disturbed zone: The Mountain Geologist, v. 53, p. 75-91.

Across northern New Mexico, the shoreline of the Western Interior Seaway regressed to the north and northeast during late Campanian to early Maastrichtian time. The uppermost lower Maastrichtian Baculites clinolobatus Zone occurs in the uppermost part of the Pierre Shale near Trinidad, Colorado (Berry, 2018). The first/last occurrences (FO/LO) of the Baculites clinolobatus Zone are 69, 67/69.28 Ma and the FO/LO of the B. baculus Zone are 72.18/70.62 Ma (Scott, 2014). By these estimates of the LO of B. baculus and the FO of B. clinolobatus, regression of the Pierre Seaway from Raton to Trinidad, took slightly less than one million years. Therefore, the occurrence of the Baculites baculus Zone in the Raton area establishes an earliest Maastrichtian age for the uppermost Pierre Shale there, places the Campanian-Maastrichtian stage boundary at the base of that zone in the uppermost Pierre and demonstrates that the Pierre Seaway regressed from northeastern New Mexico during early Maastrichtian time.

ACKNOWLEDGMENTS

The authors are grateful to Keith Berry and Neil Landman for having greatly improved the content and clarity with their reviews of an earlier version of the manuscript. We thank Gus and Sara Holm for permission to collect fossils on the Vermejo Park Ranch. We also thank Keith Berry for collaboration in the field.

REFERENCES

Gill, T., 1871, Arrangement of the families of mollusks: Smithsonian Miscellaneous Collections, no. 227, xvi + 49 p.
Hall, J. and Meek, F.B., 1855, Descriptions of new species of fossils from the Cretaceous formations of Nebraska, with observations upon Baculites ovatus and B. compressus, and the progressive development of the septa in Baculites, Ammonites and Scaphites: Memoirs of the American Academy of Arts and Sciences (new series), v. 5, p. 379-411, pls. 1-8.
Hyatt, A., 1899, Genesis of the Aristidae: Smithsonian Contributions to Knowledge, no. 673, xi + 238 p., 14 pls.
or of North America, with close affinities to *Hoploscaphites constrictus* Sowerby, 1817: American Museum Novitates, no. 3833, 40 p.


Meek, F.B., and Hayden, F.V., 1861, Descriptions of new Lower Silurian (Primordial), Jurassic, Cretaceous and Tertiary fossils collected in Nebraska by the exploring expedition under the command of Captain W. F. Reynolds, U.S. Topographical Engineer, with some remarks on the rocks from which they were obtained: Philadelphia Academy of Natural Sciences, Proceedings, p. 415-447.


Morton, S.G., 1834, Synopsis of the organic remains of the Cretaceous Group of the United States; Illustrated by nineteen plates, to which is added an appendix containing a tabular view of the Tertiary fossils discovered in America: Philadelphia, Key and Biddle, 88 p.

Nicoll, J.N., 1843, Report intended to illustrate a map of the hydrographical basin of the upper Mississippi River: 26th Congress, 2nd Session, Senate Document 237, serial 380, 170 p., with folded map.


Sealey, P.L. and Lucas, S.G., 2018, *Baculites baculus* from the uppermost Pierre Shale near Raton demonstrates that the final regression of the Late Cretaceous seaway from northeastern New Mexico occurred during early Maastrichtian time: New Mexico Geology, v. 40, p. 35-85.


Stephenson, L.W., 1941, The larger invertebrate fossils of the Navarro Group of Texas: The University of Texas Publication, no. 4101, 641 p., 95 pls.


