Sedimentologic evidence for a major paleogeographic change at 8.5–6.5 Ma near San Antonio, south-central New Mexico

Daniel J. Koning, Kevin M. Hobbs, Andrew P. Jochems, and Richard M. Chamberlin
2022, pp. 221-238. https://doi.org/10.56577/FFC-72.221
Supplemental data: https://nmgs.nmt.edu/repository/index.cfml?rid=2022002

in:

This is one of many related papers that were included in the 2022 NMGS Fall Field Conference Guidebook.

Annual NMGS Fall Field Conference Guidebooks

Every fall since 1950, the New Mexico Geological Society (NMGS) has held an annual Fall Field Conference that explores some region of New Mexico (or surrounding states). Always well attended, these conferences provide a guidebook to participants. Besides detailed road logs, the guidebooks contain many well written, edited, and peer-reviewed geoscience papers. These books have set the national standard for geologic guidebooks and are an essential geologic reference for anyone working in or around New Mexico.

Free Downloads

NMGS has decided to make peer-reviewed papers from our Fall Field Conference guidebooks available for free download. This is in keeping with our mission of promoting interest, research, and cooperation regarding geology in New Mexico. However, guidebook sales represent a significant proportion of our operating budget. Therefore, only research papers are available for download. Road logs, mini-papers, and other selected content are available only in print for recent guidebooks.

Copyright Information

Publications of the New Mexico Geological Society, printed and electronic, are protected by the copyright laws of the United States. No material from the NMGS website, or printed and electronic publications, may be reprinted or redistributed without NMGS permission. Contact us for permission to reprint portions of any of our publications.

One printed copy of any materials from the NMGS website or our print and electronic publications may be made for individual use without our permission. Teachers and students may make unlimited copies for educational use. Any other use of these materials requires explicit permission.
SEDIMENTOLOGIC EVIDENCE FOR A MAJOR PALEOGEOGRAPHIC CHANGE AT 8.5–6.5 MA NEAR SAN ANTONIO, SOUTH-CENTRAL NEW MEXICO

DANIEL J. KONING1, KEVIN M. HOBBS1, ANDREW P. JOCHEMS1, AND RICHARD M. CHAMBERLIN1

1New Mexico Bureau of Geology and Mineral Resources, New Mexico Institute of Mining and Technology, 801 Leroy Place, Socorro, NM 87801; dan.koning@nmt.edu

ABSTRACT—West of San Antonio, in southern Socorro County, the 8.5 Ma basalt of Broken Tank is used to document a broad, westward-sloping piedmont that extended across preexisting, east-tilted fault blocks that now comprise the core of the Chupadera Mountains. Prior to 8.5 Ma, fingers of the west-sloping piedmont filled shallow paleovalleys cut across hilly paleotopography of the early Chupadera Mountains. The coarse piedmont sediment is part of the Popotosa Formation, which extends ~460 m below and ~180 m above the basalt of Broken Tank. In Nogal Canyon, 7 km west of San Antonio, we measured a stratigraphic section and collected paleoflow, clast composition, and clast size data in the Popotosa Formation within 35 m below and 65 m above the 40 m thick basalt. These data indicate a change in piedmont provenance and paleoflow after the emplacement of the basalt. Crystal-poor rhyolite clasts are slightly more abundant (about 10%) below the basalt and are similar to upper Luis Lopez “moat rhyolite” lava locally exposed below the Popotosa Formation. Paleoflow was clearly southwest-directed in strata below the basalt. Immediately above the basalt lies a 1.5 m bed of silt very fine–to fine-grained sandstone (possibly eolian), which is overlain by 8 m of a coarsening-upward pebbly sandstone to pebbly conglomerate. The 55 m of overlying strata coarsen upwards from a pebble conglomerate–pebbly sandstone, interbedded with two fine-grained beds interpreted as basin-floor facies, to a boulder-bearing conglomerate. This coarsening-upward trend, combined with northeast to southeast paleoflow indications, is consistent with eastward piedmont progradation. These data and observations indicate a major paleogeographic change after the basalt of Broken Tank was emplaced at 8.5 Ma. Prior to the basalt, volcanic gravel and sand derived from the Quebradas region, with an inferred additional contribution from a postulated paleotopographic high near the modern-day village of Luis Lopez, was deposited on a southwest-sloping piedmont. After the basalt emplacement, sometime between 8.5–6.5 Ma, the southwest-flowing piedmont was replaced by a southeast-sloping piedmont sourced in the eastern Magdalena Mountains, consistent with the provenance of a unique clast type in the upper Lemitar Tuff. The cause of this “piedmont reversal” is ascribed to increased slip rates on faults east of the Rio Grande, which caused collapse and burial of the southwest-sloping piedmont and the inferred Luis Lopez paleotopographic high; this reversal also resulted in an eastward shift in basin floor facies toward the modern Rio Grande. This tectonically driven paleogeographic change would have lowered the southern sill of the late Miocene playa presumed to be the terminus of the ancestral Rio Grande, facilitating the southward integration of the Rio Grande in the latest Miocene–earliest Pliocene.

INTRODUCTION

Detailed sedimentologic study of Miocene-age stratigraphic intervals in the Santa Fe Group, the clastic sediment filling the Rio Grande rift, yields clues regarding paleo-drainage evolution. For example, in the northeastern Española Basin, close inspection of clastic (sand and gravel) material and paleoflow indicators supports interpretation of two paleo-drainages that shifted laterally in the middle Miocene, ultimately with one prograding over the other (Cavazza, 1986; Manley, 1976, 1979; Koning, 2002, 2003; Koning and Manley, 2003; Koning et al., 2005, 2013). Sedimentologic studies of shifting paleo-drainages and/or source-area changes in the Rio Grande rift include the Culebra graben of the San Luis Basin (Armstrong et al., 2013), west-central Española Basin (Ingersoll et al., 1990; Smith, 2004), northwest Albuquerque Basin (Connell et al., 1999; Koning and Personius, 2002; Koning et al., 2020), southwest Albuquerque Basin (Lozinsky and Tedford, 1991), northern boundary of the Socorro-La Jencia basins (Cather and Read, 2003; Chamberlin, 1999), and the Rincon area 140 km to the south (Mack et al., 1994; Seager and Mack, 2003).

In the Rio Grande rift, tectonic activity and paleoclimatic changes have been invoked as the main drivers for paleo-drainage evolution. The axial river, the ancestral Rio Grande, has captured the most attention in this regard because of its size and robust documentation of its downstream integration across previously closed basins at the beginning of the Pliocene (Hawley et al., 1969; Gustavson, 1991; Mack et al., 1993, 1998, 2006; Seager and Mack, 2003; Mack, 2004; Connell et al., 2005; Repasch et al., 2017; Koning et al., 2016a, 2018). Hypotheses for integration drivers include tectonic uplift in the Rio Grande headwaters (Kottlowski, 1953; Repasch et al., 2017), decrease in rift extension rates and accompanying decreasing basin subsidence rates (Connell et al., 2005; Koning et al., 2016a), and increased water discharges (Chaplin, 2008; Koning et al., 2016a, 2016b). Changes in the size of large, oblique tributary fans (e.g., ancestral Rio Puerco) and piedmont drainage systems have been ascribed to paleoclimatic changes (Connell et al., 2013) or changes in fault activity that influenced locations (loci) of maximum subsidence within a rift basin (e.g., Española Basin; Smith, 2004; Koning et al., 2013). In one classic study, the exhumation of the Caballo Mountains has been documented by changes in gravel composition (Mack et al., 1994). Exhumation there was accompanied by high extensional strain rates in the latest Miocene that reorganized fault networks and created more, but narrower, basins compared to the earlier, broader rift basins in the area (Mack et al., 1994; Seager and Mack, 2003).
Upper Santa Fe Group and post-Santa Fe Group (Plio-Pleistocene)

- Sierra Ladrones Formation and younger alluvium (Plio-Pleistocene) -- Weakly consolidated gravel and sand.

Lower to Middle Santa Fe Group (Miocene)

- Popotosa-Sierra Ladrones transitional facies (Upper Miocene) -- Interbedded sand, mud, and pebbly sand.
- Popotosa Formation, upper conglomeratic strata (Upper Miocene) -- Sandstone and conglomerate; not strongly cemented by jasperoids.
- Popotosa Formation, playa deposits (8.5-11 Ma) -- Reddish brown clay; sand tongues to north.

Normal fault -- dashed where approximately located, dotted where concealed.

Gravity Station (from PACES, 2021)

- complete Bouguer gravity anomaly contour (mGals); assumed bedrock density of 2.67 g/cm³

Late Miocene mafic flows

- Basaltic andesite of Sedillo Hill (7.0 Ma)
- Basalt of Broken Tank (8.5 Ma)
- Basalt of Chupadera Spring (9.8 Ma)

Bedrock, undivided

- Well-cemented volcanic rocks, lower Santa Fe Group, Baca Formation, Cretaceous, Pennsylvanian, and Permian strata; also Proterozoic crystalline rocks
- Socorro caldera margin (from Chamberlin, 2004); hatched lines show inside of caldera, corresponding with thick Luis Lopez Fm; dotted where buried

FIGURE 1. Map showing geographic context and simplified geology of the Chupadera Mountains and southern Socorro Basin. The Rio Grande (heavy blue line) flows south through the southern Socorro Basin. Gravity point data obtained from PACES (2021) and associated contours show the complete Bouguer gravity anomaly (courtesy of Marissa Fischera). Concealed (dotted) faults on the east side of the Rio Grande floodplain and west of the Quebradas, north of Highway 380, are inferred using these gravity data and previously mapped faults (from the USGS Quaternary faults and folds database; USGS, 2022). Bedrock geology of the Quebradas hills simplified from NMBGMR (2003). Bedrock geology for the Chupadera and Socorro Mountains is simplified from Chamberlin et al. (2002) and Chamberlin (1999). Outline of Socorro caldera, which can be assumed to host at least several hundred meters of Luis Lopez Formation, is from Chamberlin et al. (2004).
Motivation for Study

The 8.5 Ma basalt of Broken Tank acts as a stratigraphic time marker for which to interpret the paleogeography of the Socorro Basin. This feature is found 10–23 km southwest of Socorro on either side of the Chupadera Mountains and as small remnants in the middle of these mountains (Fig. 1). Depositional facies and stratigraphic relations from outcrops underlying this basalt indicate that it flowed down a west-sloping piedmont on the east side of the mountains and then continued westward through paleovalley(s) incised into bedrock near the modern-day crest of the mountains (Chamberlin et al., 2002). In other words, a major paleogeographic high was present east of the Chupadera Mountains that produced sufficient sediment to form a west-sloping piedmont extending across the Chupadera Mountains, which were poking upward through the piedmont paleo-surface as scattered hills. On the west side of the mountains, the basalt flowed west and northwest down alluvial fans before extending onto a playa floor located north of these fans (Chamberlin et al., 2002). The basalt of Broken Tank has been dated in 10 areas across the Chupadera Mountains, yielding a mean \(^{40}\text{Ar}/^{39}\text{Ar}\) age of 8.54±0.20 Ma (see Day 2 road log; Koning et al., this volume).

Preliminary inspection by the lead author of well-exposed outcrops 7 km west of San Antonio in Nogal Canyon (also known as Walnut Canyon) suggested a change in gravel composition above the basalt compared to below it. Furthermore, preliminary observation of paleocurrent indicators suggested that a change in paleoflow accompanied this change in gravel composition (S. Cather, pers. commun., 2015). Given the location of these outcrops southeast of a large playa representing the terminus of the Rio Grande in the early late Miocene (D. Koning, unpublished data), understanding how the paleotopography and paleogeography changed in the latest Miocene could lead to better understanding of how the ancestral Rio Grande integrated through what was once a closed basin. Thus, we gathered a robust set of sedimentologic data at the study area to test whether paleo-drainage systems did indeed change after emplacement of basalt of Broken Tank and to interpret the implications of this change for paleogeography, tectonics, and ancestral Rio Grande integration.

Geologic Setting

The study site is located in Nogal Canyon, 7 km west of San Antonio at the eastern margin of the Chupadera Mountains (Fig. 1). The Chupadera Mountains are cored mainly by early Oligocene volcanic rocks, with Popotosa Formation outcrops (lower-middle Santa Fe Group) concentrated on their northern ends and locally along their foothills (Fig. 1). Volcanic rocks filled two overlapping calderas in the early Oligocene: the 32.35±0.01 Ma Socorro caldera and the 29.00±0.01 Ma Sawmill caldera (ages from Chamberlin et al., 2004, adjusted for a FCT sanidine monitor age of 28.201 Ma). These volcanic rocks are composed mainly of rhyolitic ignimbrites, felsic to mafic flows, ash-fall tuffs, and volcaniclastic sediment. An important formation for our study is the Luis Lopez Formation, which consists of a 1100 m thick succession of intermediate to rhyolite-basalt flows, phenocryst-poor tuffs, and volcaniclastic sediment that filled the Socorro caldera between 32.3 Ma and 29.0 Ma (Chamberlin et al., 2004; see Fig. 1 for outline of caldera and corresponding extent of Luis Lopez Formation). The top of the Luis Lopez Formation near our study area consists of crystal-poor rhyolite domes (Chamberlin et al., 2002; Chamberlin et al., 2004).

Figure 2 shows the location of \(^{40}\text{Ar}/^{39}\text{Ar}\) samples of the basalt of Broken Tank interbedded in the Popotosa Formation near the study site. The closest sample had an age of 10.23±0.60 Ma (FCT monitor age of 28.201 Ma) that is considered unreliable because it came from an altered corestone. We prefer the age collected from the same flow 1.8–1.9 km to the south (NM 1531), which yielded a published age of 8.36±0.05 Ma (Chamberlin et al., 2002, Table 1, FCT sanidine monitor age of 27.84 Ma; correcting for the updated FCT monitor age of 28.201 Ma results in an age of 8.47±0.05 Ma.

The east-tilted Chupadera Mountains are part of a structural high that continues northward to include the west-tilted Socorro and Lemitar Mountains. This structural high can be considered as an inter-graben uplift within the Rio Grande rift, separating the La Jencia Basin on the west from the Socorro Basin on the east. Bedrock strata in the Chupadera Mountains tilt 20–30° to the east, the tilting facilitated by west-down motion along the Chupadera fault bounding the western foot of the mountains (Fig. 1). The eastward dip of the Chupadera Mountains likely continues in bedrock strata and Popotosa Formation (Santa Fe Group) strata under the eastern part of the adjoining Socorro Basin (Chamberlin et al., 2002). Several faults offset Quaternary sediment in the piedmont between the Chupadera Mountains and the Rio Grande, mostly exhibiting an east-down sense of throw. More detail of the bedrock geology of the Chupadera Mountains can be found in Eggleston (1982), Eggleston et al. (1983), Chamberlin et al. (2002, 2004), and Chamberlin and Cikoski (2010).

On the north side of the Chupadera Mountains are well-cemented conglomerates and sandstones of the lower to middle Popotosa Formation, overlain by hundreds of meters of clays deposited by a playa lake system in the early part of the late Miocene (Chamberlin, 1999; Chamberlin et al., 2002). Sand tongues interbedded in the playa clays increase in abundance to the north. Ongoing work on these sand tongues suggest a sand composition similar to Plio-Pleistocene, ancestral Rio Grande sand, but this needs to be confirmed by additional petrography and detrital sanidine analyses; moreover, sedimentary structures and lithostratigraphic assemblages are consistent with deltaic-fluvial facies (D. Koning, unpublished data). Nowhere in the northwestern Chupadera Mountains has playa sediment been observed beneath the ~11 Ma rhyolite of Pound Ranch, and playa deposits are not preserved on top of the 6.97±0.02 Ma basaltic andesite of Sedillo Hill (Chamberlin and Osburn, 2006). Therefore, it is interpreted that these clays and sand tongues are associated with the terminal playa of the Rio Grande, and the age of this playa spanned 11 to 6.5–7 Ma in the northern Chupadera Mountains area.

The Socorro Basin can be subdivided into a northern and
southern part, divided by the Socorro lineament of Chapin (1971) that projects northeastward from the northern Chupadera Mountains to ~10–15 km due-east of Socorro. Available gravity data suggests the northern basin is asymmetric, deepening westward toward the Socorro Canyon fault system, whereas the southern basin may be more symmetrical (Fig. 1; Sanford, 1968). Near San Antonio, mapped faults bounding the southern Socorro Basin include the Socorro Canyon fault (on the west, bending in a southward direction to a southeast strike) and the Coyote and Fite Ranch faults on the east; the eastern fault system is inferred to have >500 m of east-down throw (Cather, 2005; Cather and Colpitts, 2005). Inspection of Bouguer gravity data suggests an inner graben within the southern Socorro Basin, close to the Rio Grande, that is bounded on the east by a west-down gravity gradient located ~3 km east of the river and 5–7 km west of the Fite Ranch fault (Fig. 1; also shown by Sanford, 1968). We interpret that this gravity gradient corresponds to a west-down fault that locally coincides with two short, mapped faults offsetting youngest Santa Fe Group deposits (Cather, 2005); presumably much greater vertical offset occurs at depth. Gravity data is insufficient west of the Rio Grande floodplain to infer structure, but presumably the east-tilted homocline manifested in the Chupadera Mountains continues under there.

METHODS

We focused our study to a ~100 m thick interval of conglomeratic sediment underlying and overlying the basalt of Broken Tank. A stratigraphic section was measured in this interval, on the north wall of Nogal Canyon (Fig. 2), using a Jacob staff and Abney level. Sedimentologic units were differentiated and...
FIGURE 3. Lower part of the stratigraphic section. Interpreted depositional environment and stratigraphic unit is given on the right column. Green rectangle denotes position of sedimentologic measurements: CS-xx = maximum clast size, CC-xx = clast count, and PF-xx = paleoflow measurement (using clast imbrication). Average sizes of maximum-clast size measurements are shown in the olive-green bar graph (one standard deviation is given by the brackets; n = number of measurements). Rose diagrams show the results of paleoflow direction determined from imbricated gravel; n = number of measurements.
UPPER NOGAL CANYON STRATIGRAPHIC SECTION

FIGURE 4. Upper part of the stratigraphic section. See Figure 3 caption for explanation of symbols.
described according to standard geologic practice (introduc-tory paragraph of Appendix 1). Sand color and grain size were respectively measured in the field using a Munsell color chart and grain-size card.

Below the basalt we conducted clast counts at two sites (CC-1a, CC-1b), paleoflow measurements at three sites (PF-1a through PF-1c), and maximum clast size measurements at three sites (CS-01 through CS-03; Figs. 3, 4). Above the basalt, we conducted measurements at two clast count sites (CC-3a, CC-3b), four paleoflow sites (PF-3a through PF-3d), and four maximum clast size measurement sites (CS-04 through CS-07). For the clast counts, we removed clasts from moderately cemented outcrops with a rock hammer and then differentiated the clast lithologies based on features discernable.
with a hand lens. Clast categories were: (1) phenocryst-poor and non-foliated, felsic volcanic clasts, (2) phenocryst-poor and flow-foliated, felsic volcanic clasts, (3) moderately porphyritic, felsic volcanic clasts (5–20% phenocrysts), (4) highly porphyritic and quartz-rich, felsic volcanic clasts (20–40% phenocrysts), (5) intermediate volcanic rocks with visible plagioclase crystals ± hornblende or pyroxene phenocrysts, (6) La Jara Peak Basaltic Andesites lacking plagioclase phenocrysts and containing ≤1 mm long olivine or pyroxene phenocrysts (commonly altered to iddingsite), (7) Permian-Pennsylvanian sedimentary rocks (limestone and reddish siltstone–very fine sandstone), (8) other sedimentary clasts, and (9) jasperoid-cemented breccia or conglomerate representing reworked lower Popotosa Formation.

FIGURE 6. Photographs of Popotosa Formation strata immediately underlying (bottom photo) and overlying (top photo) the basalt of Broken Tank. Top: View to the northwest of the coarsening-upward, ~50 m of strata overlying the basalt; stratigraphic units are labeled per those in Figure 4 and Appendix 1. Bottom: The few meters of strata underlying the basalt of Broken Tank (top of photo) is anomalously red and has 10% cobbles. The lower stratigraphic interval remains relatively coarse until ~0.5–0.8 m below the basalt. Kevin Hobbs for scale.
A Brunton compass was used to determine paleoflow from imbricated gravel. The number of clasts measured at each site typically ranged from 40 to 56, with one site (PF-3c) having 70 measurements and another site (PF-3b) having 24 measurements. Strata below the basalt of Broken Tank dip 20–41° and required restoration of imbricated gravel back to horizontal to accurately determine paleoflow. At these sites, we measured the axis corresponding to maximum dip (plunge) and down-dip direction (bearing) of tilted clasts. Bedding orientations closest to each site were used to restore imbricated gravel positions back to horizontal using the program Stereonet (Allmendinger et al., 2012; Cardozo and Allmendinger, 2013). Paleoflow data were input as lines, with bearing (trend) being the direction of imbrication and plunge being the maximum dip value of the clast. Given that imbrication records paleoflow in the up-dip direction (i.e., opposite what we measured), we then converted our restored bearing values to paleoflow direction by adding 180°. Above the basalt of Broken Tank, strata dipped <15° and stratal tilt corrections were not performed.

The clast sizes are apparent values as seen on the roughly two-dimensional outcrop face, since the cementation of the strata made it difficult to extract the largest clasts. The long and medium axis of 10–20 individual gravel clasts were measured at each site using a ruler. The proportion of cobbles and medium axis of 10–20 individual gravel clasts were measured at each site using a ruler. The proportion of cobbles and medium axis of 10–20 individual gravel clasts were measured at each site using a ruler. The proportion of cobbles and medium axis of 10–20 individual gravel clasts were measured at each site using a ruler. The proportion of cobbles and medium axis of 10–20 individual gravel clasts were measured at each site using a ruler. The proportion of cobbles and boulders were visually estimated for each sedimentologic unit using percentage charts.

RESULTS

Stratigraphic Units

Stratigraphic section

The stratigraphic section measured in our study is presented as two parts, separated by the 40 m thick basalt of Broken Tank, which we informally refer to as the “lower part” (Fig. 3) and “upper part” (Fig. 4) of the stratigraphic section. Detailed descriptions are in Appendix 1. Clast count data are presented in Table 1 and Appendix 2, and individual measurements of clast sizes and clast imbrications are given in Appendix 2. Below the basalt (Fig. 3, units 1–3), strata consist of sandy conglomerate and subequal (±15%) pebbly sandstone that are in thin beds (Fig. 5). Pebbles comprise the majority of the gravel sizes with the rest being minor cobbles (8–10%, locally as much as 10–15%). Cobble-bearing beds are often lenticular. Gravel are subangular to angular and moderately to poorly sorted. The sandy matrix is pink (5YR 7/3), fine- to very coarse–grained, subangular, poorly sorted, and contains minor (<5%) silt-clay; the proportion of volcanic grains typically exceeds the combined amount of quartz and feldspar (as seen in hand lens). The upper 6 m (unit 3) immediately underlying the basalt exhibits a light red color (2.5YR 7/5) but lacks evidence of a paleosol (i.e., no horizonation, no calcium carbonate accumulation, no soil-related “clod” (ped) development).

There is a coarsening-upward trend in the 8.2 m of strata overlying the basalt (Fig. 4 and Appendix 1, units 5–6). The lower 2.3 m of this sequence (unit 5) is a silty very fine– to fine-grained sand (vFl-fL) that is massive, light brown, and contains trace medium to coarse sand grains. Above a gradational contact lies pebbly sand in thin, tabular beds. A coarsening-upward trend is observed where pebble content increases upwards from near-zero at the basal contact to 15% at a stratigraphic distance of 6.5 m above the basalt. Gravels are angular to subangular, poorly sorted, and sand-supported. Above this lower coarsening-upward zone lies a 16.6 m thick interval characterized by sandy pebble-conglomerate to pebbly sandstone intercalated with fine-grained beds, the latter commonly weathering to form distinctive recesses in the outcrop (Figs. 4, 6 and Appendix 1, units 7–13). The conglomerate occurs in thin to medium, tabular to broadly lenticular beds (Fig. 7a, d). Gravel are sand- to clast-supported, subangular, and moderately to poorly sorted. There are slightly fewer cobbles (5–10%) than found in the 35 m below the basalt. The sand matrix is light reddish brown (2.5-5YR 6/4), very fine– to very coarse–grained, subangular, and has up to 1–7% silt-clay. Medium to very coarse sand is volcaniclastic. The fine-grained beds are up to 0.5 m thick, internally massive, light reddish brown (5YR 6/3), and composed of clay-silt or very fine–grained sandstone (Fig. 7c). In the fine-grained beds there are trace to 5% fine to medium sand grains and trace to 0.5% coarse sand or pebbles (Fig. 7c). Some fine beds have 5–10% nodules of calcium carbonate, representing a sufficient time of surficial stability to form weak calcic soils (stage I).

Table 1. Clast count data for the lower and upper Popotosa Formation sections at Nogal Canyon.

<table>
<thead>
<tr>
<th>Clast Count (CC) Site</th>
<th>xl-poor tuff/rhy* (fol)</th>
<th>xl-poor tuff/rhy</th>
<th>plag-rich int lavas</th>
<th>Perm sed</th>
<th>jasp-cmt bx/cgl</th>
<th>mod xl-rich* ignm</th>
<th>xl-rich* ignm</th>
<th>Tlp</th>
<th>other sed (non-Perm)</th>
<th>Tbt</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Section</td>
<td></td>
</tr>
<tr>
<td>CC-3B</td>
<td>8.4</td>
<td>42.9</td>
<td>6.7</td>
<td>0.0</td>
<td>0.0</td>
<td>13.5</td>
<td>25.2</td>
<td>1.7</td>
<td>0.0</td>
<td>1.7</td>
<td>119</td>
</tr>
<tr>
<td>CC-3A</td>
<td>14.8</td>
<td>37.8</td>
<td>8.9</td>
<td>0.0</td>
<td>3.0</td>
<td>12.6</td>
<td>20.0</td>
<td>3.0</td>
<td>0.0</td>
<td>0.0</td>
<td>135</td>
</tr>
<tr>
<td>Lower Section</td>
<td></td>
</tr>
<tr>
<td>CC-1B</td>
<td>18.3</td>
<td>39.7</td>
<td>20.6</td>
<td>0.0</td>
<td>0.0</td>
<td>17.5</td>
<td>2.4</td>
<td>0.8</td>
<td>0.8</td>
<td>0.0</td>
<td>126</td>
</tr>
<tr>
<td>CC-1A</td>
<td>10.3</td>
<td>54.0</td>
<td>7.1</td>
<td>0.0</td>
<td>0.8</td>
<td>8.7</td>
<td>18.3</td>
<td>0.8</td>
<td>0.0</td>
<td>0.0</td>
<td>126</td>
</tr>
</tbody>
</table>

NOTE: Values are percentages except for n (total number of clasts identified). Abbreviations: bx = breccia; cgl = conglomerate; cmt = cemented; fol = foliated; ignm = ignimbrite; int = intermediate; jasp = jasperoid; mod = moderately; Perm = Permian; rhy = rhyolite; sed = sedimentary; Tbt = Basalt of Broken Tank; Tlp = La Jara Peak Basaltic Andesite; xl = crystal.

*Phenocryst content definitions are as follows: crystal poor = ≤5%; moderately crystal-rich = 5–20%; crystal-rich = 20–40%.
FIGURE 7. Photographs of the upper part of the stratigraphic section. (A) Tabular to broadly lenticular, thin beds of sandy conglomerate (unit 9), 1.5 m Jacob staff for scale. (B) Unit 12 (with two books) bounded by two clayey to silty, ~0.5 m thick beds (units 11 and 13); the lower 15 cm of unit 11 is gradational with the underlying unit 10 pebbly sandstone. (C) Close-up of the upper recessed marker bed (unit 13), which is a clay-silt that is massive. Trace granules (denoted by the white arrows) are found in this fine-grained matrix; these fine-grained beds are interpreted as distal run-out of hyperconcentrated flows (see Seager and Mack, 2003) as a sheetflood on a basin floor. (D) Lower part of unit 14, which has 5% interbeds of clayey-silty sand (with minor pebbles) interpreted as hyperconcentrated flows. These fine-grained beds are more common down-section in unit 14. (E) View to north of down-to-east fault zone, annotated by both heavy black lines and white arrows; we could not correlate confidently across the fault, but drag indicators are down to the east. Cliff is about ~30–36 m tall. (F) Cobble-rich strata (10–15% cobbles) near top of section at 130–134 m (unit 15), ~60 m above top of basalt; uncertain correlation across the fault in panel F means these stratigraphic heights are approximate.
Sedimentologic evidence for a major Paleogeographic change at 8.5–6.5 Ma near San Antonio, South-central NM

Contact of these fine beds can be sharp or transitional (marked by interbedding) with underlying pebbly sediment. Upper contacts are scoured. Two 0.5 m thick tabular beds composed of this fine-grained sediment make conspicuous, recessed marker beds that extend several 10s of meters across the entire upper outcrop (units 11 and 13; Figs. 4, 6, 7b).

Above the upper, thick bed of fine-grained sediment lies a >55 m thick (continuing beyond the top of our stratigraphic section), coarsening-upward interval of sandy conglomerate and pebbly sandstone (Figs. 4, 6, 7 and Appendix 1, units 14–15). The thickness is a minimum value because a north-striking, east-dipping normal fault was encountered at 120 m in the stratigraphic section (Figs. 4, 7e), probably having several meters of east-down throw. The lower 6 m of this upper unit has 5% interbeds of clayey-silty sand with minor pebbles. Bedding is very thin to medium and tabular to lenticular. Gravel is clast- to sand-supported and consists of pebbles with 3–15% cobbles (cobbles increasing in abundance up-section) that are subrounded to subangular (becoming more subrounded up-section) and poorly to moderately sorted. There is an estimated 1–3% silt-clay in the matrix. The coarsening-upward trend continues to the upper 15 m (unit 15) on the east side of the fault, which contains 1% boulders (unit 15, Figs. 4, 7f). Cobbles are commonly in lenticular, medium to thick beds, whereas pebbly sand beds are mostly very thin to thin and tabular. Sand is typically light reddish brown (5YR 6/3-4) and medium to very coarse grained, subrounded to subangular, poorly sorted, and composed of volcanic grains with 20–25% quartz and feldspar.

Exposures 1.5 km to southeast

Two stratigraphic units lying southeast of our stratigraphic section are important to consider because of their stratigraphic proximity to the basalt of Broken Tank (as mapped by Chamberlin et al., 2002). The older is located 1.5 km southeast of the upper stratigraphic section, around a cattle tank (unit Tpp in Fig. 2). This unit consists of reddish-brown clay, underlying a basalt flow a few meters thick that has been correlated to the basalt of Broken Tank (Chamberlin et al., 2002) and has returned an 40Ar/39Ar age of 8.5±0.16 Ma (updated from Chamberlin et al., 2002, using a FCT monitor age of 28.201 Ma). The other unit lies superjacent to the basalt at a distance of 1 km southeast of the upper stratigraphic section (“EXP” in Fig. 2). This upper unit is composed of light reddish-brown, interbedded clay, sand, and pebbly sand subjacent to the basalt of Broken Tank (as mapped by Chamberlin et al., 2002).
Clast Sizes

The average and standard deviation of the medium (b axis) of the gravel are plotted on Figures 3–4, with the raw data tabulated in Appendix 2. The average size at each site is mostly 9–11 cm. Particularly coarse gravel was measured a few meters below the basalt (averaging 14 cm at site CS-03). For the interval above the basalt, the lower two sites (CS-04 and CS-05 in units 9 and 14, respectively) have finer b axes (6–7 cm average) than the upper two sites (CS-06 and CS-07, 9–10 cm average), consistent with the upward-coarsening trend seen in the upper part of the stratigraphic section.

Clast Composition

Gravel composition data is listed in Table 1 and presented as bar graphs in Figure 8. Superficially, there is a difference in color and a slight difference in rounding between the gravel in the Popotosa Formation below the basalt and above the basalt, with the gravel above being slightly more rounded (especially up-section in unit 14) and darker above the basalt (compare gravel in Fig. 9a and 9b). However, only minor differences were noted in our clast counts (Fig. 8, Table 1). The gravel at all four clast-count sites are composed of felsic volcanic gravel with minor plagioclase-phyric intermediate volcanic gravel. The proportion of intermediate clasts is typically 6–9%, but at clast-count site CC-1b (18–19 m below the basalt), there is an anomalously high proportion (21%) of these clast types. We did not observe any reddish siltstones or very fine sandstones that would potentially correlate to a source area underlain by the Permian Abo or Meseta Blanca formations. “Other” sedimentary rocks were also conspicuously absent. Jasperoid-cemented breccia or conglomerates were absent or very sparse (1%), with the most (3%) being found 17–18 m above the basalt (Table 1 and Fig. 8, CC-3a, Fig. 9d). La Jara Peak basaltic clasts appear to be more abundant above the basalt (2–3% in CC-3a and CC-3b) compared to below the basalt (<1% in CC-1a and CC-1b). At a distance ~60 m above the basalt in our stratigraphic section, at site CC-3b, we note two basalt clasts that may represent fluvially reworked basalt of Broken Tank.

FIGURE 9. Close-up photographs of gravel composition. (A) Subangular pebbles and cobbles in unit 1, which was sourced to the northeast. This unit had high amounts of crystal-poor rhyolite similar to that seen in the upper moat facies of the Luis Lopez Formation. (B) Subrounded-subangular gravel of unit 14 in a modern-day, meter-scale fall block (from unit 14); paleocurrent data from in situ unit 14 indicate this unit was sourced to the northwest (Fig. 4). Note the overall darker color of the clasts and slightly more rounded gravel compared to the A panel. (C) Reddish-brown, swirly, and somewhat flattened dacite clots in a very coarse pebble of phenocryst-rich upper Lemitar Tuff. These types of clasts have not been observed east of the Rio Grande, but are common in the Lemitar Tuff of the eastern Magdalena Mountains (Chamberlin et al., 2002; Osburn et al., 1981). (D) Reddish-brown, jasperoid-cemented clast of lower Popotosa Formation. This type of clast matches with those seen in the northern Chupadera Mountains. The photographs of panels C and D were from a block of cemented sediment that tumbled down from a ledge of unit 14.
A slight difference in the gravel below and above the basalt of Broken Tank is the proportion of crystal-rich and moderately crystal-rich tuffs vs. crystal-poor tuffs (foliated and non-foliated), and the nature of the crystal-poor tuffs. Crystal-rich and moderately crystal-rich tuffs comprise 20–27% of the clast population below the basalt and 32–39% above the basalt. Crystal-poor tuffs comprise 58–64% below the basalt and 52–53% above the basalt. A qualitative observation of up-section gravel differences was made by co-author RMC, an expert on the Luis Lopez Formation (Chamberlin, 1999; Chamberlin et al., 2002, 2004), who interprets that fine-grained rhyolites similar to “moat-fill rhyolites” of the Luis Lopez Formation constitute a majority of the crystal-poor tuffs below the basalt and are less abundant above the basalt.

Another noteworthy difference is the sparse presence of clasts of a distinctive type of upper Lemitar Tuff above the basalt (Fig. 9c) and its apparent absence below it. This clast type is characterized by being rich in quartz phenocrysts and exhibiting reddish brown, swirly fragments of flattened dacite “cloths” (Fig. 9c). These dacite clots are not present in the upper Lemitar Tuff in the Socorro Mountains and east of the Rio Grande but are abundant in the Lemitar Tuff of the eastern Magdalena Mountains (Chamberlin, 1999; Chamberlin et al., 2002; Chamberlin and Osburn, 2006). This key clast type was observed in meter-scale fall blocks on the canyon floor that originated from unit 14.

Paleoflow

Paleoflow data are plotted on rose diagrams with 10° bin size (Figs. 3–4). Of three quantitative datasets (clast sizes, gravel composition, paleoflow), paleoflow shows the most difference above and below the basalt of Broken Tank. Below the basalt, paleoflow was to the southwest, whereas above the basalt it was generally to the southeast. The lowest paleoflow site in the upper part of the section, PF-3a (18–19 m above the basalt of Broken Tank), is the sole site in the upper part of the section that exhibits an average northeast-directed paleoflow. In the topmost paleoflow measurement (PF-3b), there was a relatively wide dispersion of directions, with 5 clasts showing a southwest direction, 3 a northeast direction, and the majority (17) indicating a southeast-directed paleoflow.

DISCUSSION

Depositional Environments

We are confident that the gravelly sediment seen in the majority of the stratigraphic section was deposited in an alluvial fan or piedmont depositional environment. Beds are mostly thin to medium and tabular to broadly lenticular. Sparse lenticular beds, including most beds containing cobbles, probably represent the basal parts of paleochannel fills. Cross-stratification is very rare. We infer a large component of high-energy sheetfloodling to produce the broad, coarse-grained beds. Sparsely absent are cross-stratified, sandy-gravelly channel fills (potentially displaying fining-upward trends) and adjoining floodplain deposits associated with potential fluvial environments. Paleoflow (and paleo-slope) in the piedmont deposits below the basalt of Broken Tank was to the southwest, and paleoflow (paleo-slope) of the piedmont deposits above the basalt was dominantly southeast (locally northeast).

In the upper part of the stratigraphic section, there is a robust coarsening-upward trend consistent with a prograding piedmont. The most dramatic coarsening occurs in the upward increase in pebbles seen in unit 6 (Fig. 4). The middle to upper units (units 9–15 in Fig. 4) also exhibit a coarsening-upward trend, as reflected by the increase in cobble proportion (3–10% to 10–15%, Appendix 1) and maximum clast sizes (6–7 cm to 9–10 cm; Fig. 4, Appendix 2). We do not have enough data in the lower part of the section to confidently assess coarsening-versus fining-upward trends.

The lower part of the upper interval, extending 25 m above the top of the basalt of Broken Tank (between 73–98 m in the stratigraphic section), is interpreted as distal piedmont deposits its intertonguing with fine-grained basin floor facies, the latter including eolian deposits (Fig. 4). The basin-floor deposits are interpreted for the tabular, laterally extensive beds composed of silt-clay mixed with very fine–lower to fine–lower sand. The lowest 2.3 m of the upper section (unit 5, at 73.0–75.3 m; Fig. 4) is likely eolian sediment due to its well-sorted, fine-grained texture of silt through fine-grained sand and lack of pebbles; the paucity of volcanic lithic grains in this unit also is consistent with eolian sand transported from a relatively distant, low volcanic-composition source area different from the volcanic-rich sand composing the local piedmont deposits. Furthermore, comparison with younger (Quaternary) basalt flows in south-central New Mexico indicates that accumulation of fine-grained eolian deposits can be expected on top of a basalt. Rough surfaces of late Pleistocene basaltic lava flows have been postulated as effective traps of windblown sediment at Amboy crater and in the Cima volcanic field in the Mojave Desert of southern California (Greeley and Iversen, 1981; Wells et al., 1985).

In the higher fine-grained beds, such as the two recessed marker beds, there are trace pebbles, and the lower recessed bed (unit 11) has a transitional, interbedded contact with underlying pebbly sandstone. These stratigraphically higher fine-grained beds are more likely alluvial than eolian and interpreted to have been deposited by sheetfloodling debouching from channel mouths on the distal piedmont. These are inferred to be associated with a gently sloping basin floor located east-southeast of the southeast-sloping piedmont. Because of the gradational, upward-coarsening nature of the contact between units 5 and 6, it is inferred that the upper part of unit 5, although probably eolian, also represents deposition on the eastern margin of the basin floor that was then gradually encroached upon by a southeastward-prograding, distal piedmont (unit 6).

The Popotosa Formation exposures 1.0–1.5 km to the southeast of the upper stratigraphic section, adjoining the basalt of Broken Tank, are interpreted to belong to a small, isolated playa adjoining a distal piedmont environment. The playa (Tpp on Fig. 2) is characterized by several meters of reddish-brown clays that must have been deposited in a low-en-
ergy environment. The possible depositional environments for this fine-grained sediment include: (1) part of a larger playa, although it would appear to be a separate playa than the large one to the north (Fig. 10); (2) a relatively localized playa controlled by hanging wall subsidence along a fault (e.g., Love et al., this volume); or (3) impoundment of flow against a slightly older basalt flow. We favor the latter hypothesis, but further geochemistry is needed to test it. As an argument against the second possibility, this location is not obviously located in a hanging wall of a major fault (Fig. 2). The sediment above the basalt (“EXP” on Fig. 2) reflects deposition on the margin of a basin floor and distal piedmont.

Paleogeographic Changes

We interpret a major paleogeographic change that occurred a short time after the emplacement of the 8.5 Ma basalt of Broken Tank (Fig. 10). Before 8.5 Ma, there was a southwest-sloping piedmont whose source area had a high proportion of crystal-poor rhyolites similar to those seen in the upper Luis Lopez Formation (Socorro caldera-fill). Jasper-cemented breccias (conglomerates) clasts are very sparse to absent and no western-provenance, upper Lemitar Tuff clasts are present. Luis Lopez Formation rhyolites were likely thickest within the former Socorro caldera, whose eastern boundary likely extended close to the modern-day Rio Grande (Figs. 1, 10; Chamberlin et al., 2004, fig. 2). Because of the relative abundance of crystal-poor rhyolite gravel in the lower part of the stratigraphic section, we interpret that there may have been a paleotopographic high, possibly exceeding 100s of meters in relief, somewhere in the vicinity of the modern-day community of Luis Lopez (Fig. 10). The relatively coarse texture of the conglomerate in the lower part of the section is consistent with a relatively close source area. However, the gravel of the lower part of the section is sufficiently diverse that there was probably contribution by drainages sourced farther eastward in what is now the southern Quebradas (Fig. 10), consistent with the inferred source of the southwest-flowing piedmont units of Cikoski (2010) near the Bosque del Apache National Wildlife Refuge headquarters. The absence of Pennsylvanian-Permian clasts indicate that the middle-southern Quebradas were covered by a blanket of volcanic rocks and/or volcanioclastic sediment.

After 8.5 Ma, there is evidence of an intertonguing distal piedmont with an adjacent basin floor to the east (Fig. 4, units 5–13). This later piedmont generally sloped to the southeast based on our paleoflow data. Early in this period, local piedmont deposition may have been dominated by an alluvial fan centered southwest of our study area, producing northeast-directed paleoflow at clast count site CC-3a. With time, the center of this fine-grained sediment include: (1) part of a larger playa, although it would appear to be a separate playa than the large one to the north (Fig. 10); (2) a relatively localized playa controlled by hanging wall subsidence along a fault (e.g., Love et al., this volume); or (3) impoundment of flow against a slightly older basalt flow. We favor the latter hypothesis, but further geochemistry is needed to test it. As an argument against the second possibility, this location is not obviously located in a hanging wall of a major fault (Fig. 2). The sediment above the basalt (“EXP” on Fig. 2) reflects deposition on the margin of a basin floor and distal piedmont.

Post 8.5 Ma Change in Rift Tectonic Activity

Given our interpreted age for the upper part of the stratigraphic section and the age of the basalt of Broken Tank, we argue that a major tectonic change occurred in the southern Socorro Basin and Chupadera Mountains between 8.5 Ma and 6.5 Ma. This tectonic change resulted in major subsidence of the paleotopographic high inferred for the Luis Lopez area and the former southwest-flowing piedmont. Faults controlling this subsidence may possibly correspond to the west-down Bouguer gravity anomaly gradient located approximately a few km east of the modern-day Rio Grande (Fig. 1). The postulated fault zone along this Bouguer gradient has poor expression in the late Quaternary geologic record (compare Fig. 1 with maps in Persinion and Jochems, 2016). The maximum age for this subsidence is between the 8.5 Ma age of the basalt of Broken Tank and the inferred age of the base of the upper piedmont unit (7–8 Ma). By roughly 7.5–6.5 Ma, enough subsidence occurred in this graben to induce eastward migration of the basin floor to what is now the Rio Grande floodplain, concomitant with east-southeast progradation of the younger piedmont.

Tilting of fault-bounded, tectonic blocks created basins and an early version of the Chupadera Mountains before 8.5
Sedimentologic evidence for a major Paleogeographic change at 8.5–6.5 Ma near San Antonio, South-central NM

FIGURE 10. Interpretative paleogeographic maps for 9.0–8.5 Ma (top) and 8.0-6.5 Ma (bottom), illustrating the replacement of the southwest-sloping, northeast-provenance piedmont at the study area (pink box) with a southeast-sloping, northwest-provenance piedmont. Thin black lines are boundaries between paleogeographic elements, including piedmont systems sourced from unique areas. Thick black lines are faults, with the ones near the center of the basin colored red. These panels encompass the time period before and after the emplacement of the 8.47±0.05 Ma basalt; note that we do not show a time panel for the basalt and paleogeography at 8.47 Ma. Our preferred interpretation for this reversal is a concentration of strain along faults near the center of the Socorro Basin, particularly a postulated fault corresponding with a high Bouguer anomaly gradient a few kilometers east of the modern-day Rio Grande.
Ma (Chamberlin et al., 2002). This is evidenced by two bed-
rock-incised paleovalleys near the crest of the mountains that
are back-filled by Popotosa conglomeratic sediment, with in-
terpreted westward paleoflow, capped by the 8.5 Ma basalt of
Broken Tank or the 9.8 Ma basalt of Chupadera Spring. Slip
continued on the western-bounding fault of these mountains,
the west-down Chupadera fault, after 8.5 Ma, based on the 210
m of vertical displacement of the basalt of Broken Tank across
three Chupadera fault strands at a location ~2 km north-north-
west of the west end of the main narrow of Nogal Canyon
(measuring from the geologic maps of Osburn et al., 1981, and
Chamberlin et al., 2002). East-down tilting, likely accompan-
ying faulting on the west-down Chupadera fault, continued after
8.5 Ma, because post-8.5 Ma Popotosa Formation strata in the
study area are tilted eastward 5°–14°.

The apparent eastward shift in extensional strain to the
present-day Socorro Basin corresponds temporally with three
tectonic phenomena in the Rio Grande rift. One, this shift is
consistent with the long-term decrease in exhumation rates
of the Magdalena Mountains that occurred after 15 Ma (Ab-
ney and Niemi, 2020, Fig. 3). Two, the major reorganization
of extensional strain and basin geometry interpreted here also
occurred at the same time in the southern Caballo Mountains
and Rincon-Hatch Basins (Seager and Mack, 2003; Mack et
al., 1994). Three, inward shifting of strain occurred during the
late Miocene for the Santo Domingo–Española Basin area
(Gardner and Goff, 1984; Baldridge et al., 1994; Smith, 2004;
Minor et al., 2006, 2013; Koning et al., 2013). In the Española
Basin, such a shift in rift strain could have been influenced by
magmatism related to the Jemez volcanic field, and 11–7 Ma
magmatism in the Socorro area (Chamberlin, 1999; Cham-
berlin et al., 2002; Bobrow et al., 1983; Newell, 1997) also could
have influenced local fault activity.

Implications for Rio Grande Evolution

Previous models explaining the southward integration of the
Rio Grande, such as epeirogenic uplift of the San Luis
Basin and surrounding Rocky Mountains (Kottlowski, 1953;
Repasch et al., 2017) or decreases in tectonic subsidence rates
(Connell et al., 2005) only consider the headwaters or middle
flow-reaches of the river. The paleogeographic changes doc-
umented by the exposures in Nogal Canyon add a potential
downstream driver to Rio Grande integration. Namely, signifi-
cant post-8.5 Ma subsidence of a previous topographic high
and piedmont slope in what is now the Rio Grande Valley, near
Luis Lopez and San Antonio, induced the basin floor facies,
presumably including the aforementioned playa, to migrate to
the south-southeast. In other words, tectonic subsidence low-
ered the southeastern part of the sill that confined the terminal
playa to the Socorro region. Concurrent work documents high
rates of slip along a possible continuation of faults bounding
the east side of the “inner Socorro Basin graben,” 20 km south
of our study area (Koning and Heizler, this volume). Collect-
ively, the high fault slip rates and subsidence of the “inner
Socorro Basin graben” allowed the playa and eventually the
Rio Grande to off-lap into the area of maximum subsidence,
eventually creating a paleotopographic-low pathway for the
ancestral Rio Grande to extend southwards into the San Mar-
cial Basin. The integration of the Socorro Basin may have oc-
curred by 6.5–7.0 Ma, considering the 6.97±0.02 Ma age of the
Sedillo Hill basaltic andesite that caps playa deposits north-
west of the Chupadera Mountains (Chamberlin and Osburn,
2006). After occupying the central Socorro Basin for 3–4 my,
the Socorro terminal playa was no more, and the Rio Grande
kept on flowing southward.

However, this study alone cannot negate an alternative hy-
pothesis: that increased sediment and/or water discharge de-
ivered from the Rio Grande, perhaps due to paleoclimatic and
paleoclimatic-modulated erodibility changes in the paleo-land-
scape, caused the Socorro Basin to fill up rapidly with sediment
or water. This rapid “filling up,” either by water or sediment,
would have facilitated over-topping of the southern sill. Such a
paleoclimatic driver would have operated independently of the
aforementioned tectonic driver, and both could have been oc-
curring at the same time. This hypothesis is currently being ex-
amined by sedimentologic work the lead author is conducting
on the playa and fluvo-deltaic sediment of the late Miocene
playa lake near the northern Chupadera Mountains.

CONCLUSION

Our paleoflow data, in agreement with clast-count data,
dicate that a major paleogeographic change occurred in the
1–2 my following emplacement of the 8.5 Ma basalt of Broken
Tank. A southwest-sloping piedmont, whose toe extended ~2
km west of the west side of the Chupadera Mountains, was re-
placed by a southeast-flowing piedmont with a basin floor cen-
tered near the modern Rio Grande floodplain. We postulate
that this change occurred in response to an eastward shifting or
concentration of extensional strain to an eastern fault bounding an
“inner Socorro Basin graben,” whose location corresponds to a
steep Bouguer gravity gradient (Sanford, 1968). By ca. 6.5–7.0
Ma, what was once a medial piedmont, perhaps containing a
bedrock paleotopographic high, was converted to a basin floor,
allowing the ancestral Rio Grande to flow southward into the
adjoining San Marcial Basin. Thus, the latest Miocene exten-
sional tectonic reorganization observed to the south near the
southern Caballos Mountains (Mack et al., 1994) also occurred
in the Socorro area, and this tectonic change was an import-
ant initial driver for the southward integration of the ancestral
Rio Grande. This could have happened in conjunction with up-
stream paleoclimatic fluvial-integration drivers, a hypothesis
that is currently being examined.

ACKNOWLEDGMENTS

Based on reconnaissance work, Dr. Steven Cather (NMB-
GMR) was the first to suspect a notable change in piedmont
deposits across the basalt of Broken Tank in lower Nogal Can-
yon, accompanied by a change in paleoflow direction. He sug-
gested to the lead author to undertake a more detailed study.
Claire and Adele Koning assisted in collecting maximum clast
sizes in the stratigraphic section. Marissa Fischera provided
complete Bouguer anomaly gravity data (point data and contours). The manuscript was improved by the helpful reviews of Steven Cather, Jacob Thacker, and Geoff Rawling.

REFERENCES

NMBGR [New Mexico Bureau of Geology and Mineral Resources], 2003, Geologic Map of New Mexico, 1:500,000: New Mexico Bureau of Geology and Mineral Resources.

PACES [Pan-American Center for Earth and Environmental Studies], 2021, Gravity dataset for the United States Lower 48 states: data obtained from Raed E. Aldouri (University of Texas at El Paso) on September 14; dataset description at http://cybershare-portal.utep.edu/datasets (accessed September 14, 2021).

Appendices can be found at https://nmgs.nmt.edu/repository/index.cfm?rid=2022002