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INHERITED ZIRCONS IN POST–75 MA IGNEOUS 
ROCKS OF THE WESTERN SAN JUAN MOUNTAINS: 

EVIDENCE FOR LONG-TERM INVOLVEMENT 
OF PROTEROZOIC LITHOSPHERE IN MAGMA 

PRODUCTION
DAVID A. GONZALES

Department of Geosciences, Fort Lewis College, 1000 Rim Drive, Durango, CO 81301; gonzales_d@fortlewis.edu

AbstrAct—Inherited zircons in 75–4 Ma mafic to felsic igneous rocks in the western San Juan Mountains offer a glimpse into the prove-
nance and genesis of magmas. Inherited zircon populations together with trace element and isotopic signatures lend evidence for long-term 
involvement of Proterozoic lithosphere with arc signatures regardless of composition, age, or tectonomagmatic regime. Inherited zircons in 
the 32–30 Ma San Juan Formation and Cenozoic breccia dikes-pipes compose 8% to 95% of total zircon populations and show the greatest 
age range (2700–63 Ma). These rocks contain high proportions of 1800–1390 Ma zircons attributed to the melting of Proterozoic basement 
rocks along with contamination by detrital zircons from Paleozoic to Cenozoic sedimentary rocks. Most plutonic rocks emplaced during the 
intervals 75–60 Ma and 32–26 Ma contain 9% to 100% inherited 1800–1390 Ma zircons, with minor Archean and post–1300 Ma contri-
butions. This is evidence that partial melting of 1800–1390 Ma crust was a major contributor in magma production. In contrast, most 23–5 
Ma felsic rocks produced during incipient rifting and injection of mantle melts into the middle-upper crust contain only 0–10% inherited 
zircons, possibly due to a melt source devoid of inherited populations or changing melt conditions. The data reveal the legacy of accreted 
Proterozoic lithosphere in the production of igneous rocks in the region over the past ~80 million years. This is an important consideration 
in reconstructing the magmatic history and provenance of magmas under shifting tectonic regimes.

New Mexico Geological Society Guidebook, 74th Fall Field Conference, 2024, p. 127–140, https://doi.org/10.56577/FFC-74.127

INTRODUCTION

The western San Juan Mountains on the boundary of the 
Colorado Plateau and Southern Rocky Mountains are a ware-
house of latest Mesozoic to Cenozoic magmatic events (Figs. 
1 and 2) linked to mountain building, landscape evolution, and 
mineralization (e.g., Burbank and Luedke, 2008; Gonzales, 
2015; Gonzales et al., 2021). An understanding of the genesis 
and evolution of magmas over the past 75 Ma is fundamen-
tal to reconstructing the magmatic history, but only a limited 
amount of data are published to address these issues, especially 
the provenance of magmas.

Laser-ablation U-Pb zircon analyses on post–75 Ma igne-
ous rocks (Fig. 1) and hydrothermal breccias in the western 
San Juan Mountains over the past decade (Gonzales, 2015, 
2017, 2019; Gonzales et al., 2021) disclose inherited zircons 
of various ages that were previously undocumented (noted in 
Gonzales, 2015). These inherited zircons were entrained at 
depth in 75–4 Ma magmas, then brought to higher crustal lev-
els in the latest Mesozoic to Cenozoic.

This paper presents the ages and proportions of inherited 
zircons in post–75 Ma igneous rocks in southwestern Colorado 
(Fig. 3; Table 1; Appendix 1), which lend insight into an endur-
ing ancestry of 1800 to 1300 Ma lithosphere in melt production 
regardless of the tectonic regime. These findings are an essen-
tial consideration in unraveling the magmatic-tectonic history 
and geochemical traits of 75–4 Ma magmatic rocks, especially 
those that formed after 23 Ma and are distinguished by typical 
arc signatures (e.g., Glazner, 2022).

GEOLOGIC SETTING

A series of rugged peaks along the boundary of the Southern 
Rocky Mountains and the Colorado Plateau define the western 
San Juan Mountains. The oldest exposed rocks are 1800–1700 
Ma metamorphosed arc assemblages in the Irving Forma-
tion and Twilight Gneiss, as well as 1730–1690 Ma syn- to 
post-orogenic granitic to dioritic plutons (Fig. 1; Gonzales and 
Van Schmus, 2007; Hillenbrand et al., 2023). This arc complex 
is overlain by thick successions of ~1705 Ma metamorphosed 
marine and fluvial deposits in the Uncompahgre Formation 
and Vallecito Conglomerate (Gonzales and Van Schmus, 2007; 
Karlstrom et al., 2017; Hillenbrand et al., 2023). A composite 
batholith of syn- to post-deformational granite to gabbro was 
emplaced from 1450 to 1400 Ma (Gonzales and Van Schmus, 
2007). The Proterozoic basement is mostly covered by Cam-
brian to Cenozoic sedimentary rocks and 32–27 Ma volcanic 
rocks, except in the Needle Mountains (Fig. 1) and minor ex-
posures near Ouray and Rico.

The latest Mesozoic to Cenozoic (75–4 Ma) record in 
southwestern Colorado is highlighted by generations of mafic 
to felsic plutonic rocks (Figs. 1 and 2; Gonzales, 2015, 2017, 
2019; Gonzales et al., 2021). These rocks were emplaced on 
the southern extent of a northeast-trending regional zone of 
magmatism (i.e., the Colorado Mineral Belt), with peak events 
at 75–65 Ma, 35–23 Ma, and 18–4 Ma (e.g., Cunningham et al., 
1977, 1994; Cappa, 1998; Chapin et al., 2004; Chapin, 2012).

Laramide magmatism involved intrusion of 75–60 Ma 
(Gonzales, 2015, 2017) alkaline to subalkaline mafic to fel-
sic plutons into Paleozoic to Cenozoic strata (Figs. 1 and 2) 
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producing domal complexes (e.g., La Plata Mountains, Rico 
Mountains). Emplacement of mantle magmas during the in-
tervals of 28–18 Ma and 10–4 Ma produced alkaline maf-
ic dike-diatreme complexes in the Navajo volcanic field and 
dikes across the northern San Juan Basin (Fig. 1; Roden et al., 
1979; Laughlin et al., 1986; Nowell, 1993; Farmer et al., 2008; 
Gonzales et al., 2010; Nybo et al., 2011; Gonzales and Lake, 
2017; Lipman and Zimmerer, 2019; McCormick and Gonza-
les, 2023). Mantle magmatism involved injection of asthe-

nospheric melts into metasomatized lithospheric mantle and 
lower crust (e.g., Roden et al., 1990; Usui et al., 2002, 2003; 
Smith et al., 2004; Gonzales and Lake, 2017; McCormick and 
Gonzales, 2023). This happened in the transition from regional 
contraction to extension (e.g., Humphreys, 1995; Humphreys 
et al., 2003) with the influx of magmas along lithospheric-scale 
anisotropies (Warner, 1980; Karlstrom et al., 2005).

Mantle melts contributed to the production of crustal mag-
mas and related volcanism during the period from 35–23 Ma 

FIGURE 1. General distribution of latest Mesozoic to Cenozoic intrusive rocks (modified after Cunningham et al., 1994) and the Oligocene San Juan Formation in 
the western San Juan Mountains. The 28.4–27.6 Ma San Juan-Silverton caldera complex (SC; Lipman et al., 1973; Steven and Lipman, 1976; Lipman, 1989; Bove 
et al., 2001) is shown within the approximate the magmatic locus of the San Juan volcanic field (SJF). The Needle Mountains Proterozoic complex is indicated by 
NM. The approximate boundaries of the Rico Mountains (RM) and San Miguel Mountains are delineated with dashed lines.
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(e.g., Lipman et al., 1973, 1978; Riciputi et al., 1995; Farmer 
et al., 2008; Gonzales and Lake, 2017; Lipman and Zimmerer, 
2019). Eruptions of 32–30 Ma stratovolcanoes created thick 
successions of andesitic to dacitic lava flows and pyroclastic 

deposits with interbedded lahars in the San Juan Formation 
(Figs. 1 and 2). This volcanism closely followed latest Eocene 
uplift and erosion (e.g., Gonzales et al., 2021). The 28.4–27.6 
Ma San Juan-Silverton caldera complex formed during the  

FIGURE 2. A comparison of the age distribution of latest Mesozoic to Cenozoic plutonic rocks in southwestern Colorado in the context of regional tectonic-mag-
matic events.

FIGURE 3. Plot of ages of latest Mesozoic to Cenozoic plutonic rocks, breccia dikes, and San Juan Formation against the proportions of inherited zircons analyzed 
in the samples. Note that 75–26 Ma rocks have a variable but overall high proportion of Proterozoic to Archean zircons, whereas post–20 Ma rocks and some 26–25 
Ma intrusive rocks have significantly lower proportions of inherited zircons.



Gonzales130

G
eo

lo
gi

c 
U

ni
t, 

L
oc

at
io

n,
 

R
oc

k 
Ty

pe
#

L
at

itu
de

 
L

on
gi

tu
de

 
C

ry
st

al
liz

at
io

n 
A

ge
 in

 M
a 

(±
2σ

)
Z

ir
co

n 
A

ge
 P

op
ul

at
io

ns
 (M

a)

%
  

In
he

ri
te

d 
Pr

e-
54

1 
M

a 
 

Z
ir

co
ns

>2
50

0
25

00
–

18
50

18
50

–
16

00
16

00
–

13
90

13
90

–
10

00
10

00
–

54
1

54
1–

25
2

25
2– 75

<7
5

Sa
n 

Ju
an

 F
or

m
at

io
n 

(3
6–

30
 M

a)
6 C

ox
co

m
b 

Pe
ak

, 
da

ci
te

 la
va

 fl
ow

1
38

.0
80

04
-1

07
.5

42
95

30
.5

±0
.3

 (n
 =

 2
8)

3
32

8.
6

1 W
ee

ha
w

ke
n 

C
re

ek
, 

an
de

si
tic

 tu
ff 

br
ec

ci
a

2
38

.0
07

03
-1

07
.7

35
65

30
.9

±0
.3

4 
(n

 =
10

)
30

.9
±0

.3
5 

(n
 =

12
)

3
3

23
20

.7

6 B
ea

r C
re

ek
, 

an
de

si
tic

 tu
ff 

br
ec

ci
a

3
38

.0
03

35
3

-1
07

.6
55

12
31

.4
±0

.4
 (n

 =
 6

)
1

2
16

2
6

77
.8

1 S
ilv

er
 Ja

ck
 B

as
in

, 
da

ci
tic

 fl
ow

 b
re

cc
ia

4
38

.2
28

73
3

-1
07

.5
25

56
32

.5
±0

.4
 (n

 =
 9

)
16

12
1

11
72

.5

6 P
or

tla
nd

 m
in

e,
 

an
de

si
tic

 tu
ff 

br
ec

ci
a

5
38

.0
18

91
8

-1
07

.6
41

67
35

.5
±5

.9
 (n

 =
 3

)
1

7
13

3
87

.5

1 M
ea

rs
 B

as
in

, 
da

ci
tic

 tu
ff 

br
ec

ci
a

6
38

.0
18

63
1

-1
07

.8
78

49
N

D
4

2
20

19
14

14
4

76
.6

B
re

cc
ia

 d
ik

es
 (6

5 
an

d 
27

 M
a)

5 O
ur

ay
 (T

K
ic

)
7

38
.0

42
85

2
-1

07
.6

79
46

65
.2

±1
.0

 (n
 =

 1
0)

2
2

37
23

0
16

4
1

7
8

94
.8

5 P
la

ce
rv

ill
e 

(c
l)

8
38

.0
08

30
9

-1
08

.0
45

39
N

D
27

66
1

9
93

.2

5 S
to

ny
 M

ou
nt

ai
n

9
37

.9
81

41
-1

07
.7

65
85

27
.2

±0
.1

  
(n

 =
 1

57
)

1
1

10
24

31
17

18
9

18
5

24
.4

M
io

ce
ne

-P
lio

ce
ne

 in
tru

si
ve

 ro
ck

s (
23

–2
.5

8 
M

a)
4 P

rie
st

 C
re

ek
, 

qu
ar

tz
 m

on
zo

ni
te

 
(T

cl
)

10
37

.6
69

02
 

-1
08

.1
16

97
4.

1±
0.

08
 (n

 =
 2

5)
29

0

4 C
al

ic
o 

Pe
ak

, 
qu

ar
tz

 m
on

zo
ni

te
 

(T
ca

)
11

37
.7

24
43

 
-1

08
.0

79
22

4.
7±

0.
08

 (n
 =

 3
1)

33
0

1 Y
an

ke
e 

B
oy

 B
as

in
, 

gr
an

ite
 p

or
ph

yr
y 

(r
h)

12
37

.9
88

91
-1

07
.7

71
37

12
.1

±0
.1

 (n
 =

 3
2)

34
0

2 C
hi

ca
go

 B
as

in
, 

gr
an

ite
 p

or
ph

yr
y 

(T
i)

13
37

.6
02

50
0

-1
07

.6
08

30
N

D
1

4
1

83
.3

2 C
hi

ca
go

 B
as

in
, 

gr
an

ite
 p

or
ph

yr
y 

(T
i) 

(2
 p

ha
se

s)
14

37
.6

02
50

0
-1

07
.6

08
33

9.
1±

0.
44

 (n
 =

 7
)

28
.2

±0
.4

7 
 

(n
 =

 1
5)

7
0

TA
B

LE
 1

. S
um

m
ar

y 
of

 U
-P

b 
zi

rc
on

 ag
e d

at
a f

or
 th

e S
an

 Ju
an

 F
or

m
at

io
n,

 b
re

cc
ia

 d
ik

es
, a

nd
 la

te
st

 M
es

oz
oi

c t
o 

C
en

oz
oi

c p
lu

to
ni

c r
oc

ks
 o

f t
he

 w
es

te
rn

 S
an

 Ju
an

 M
ou

nt
ai

ns
. A

na
ly

tic
al

 d
at

a f
or

 ea
ch

 sa
m

pl
e a

re
 re

po
rte

d 
in

 A
pp

en
di

x 
1.



InherIted ZIrcons In Post–75 Ma Igneous rocks of the Western san Juan MountaIns 131
1 T

el
lu

rid
e,

 
gr

an
ite

 p
or

ph
yr

y 
(r

p)
15

37
.9

39
70

6
-1

07
.8

56
54

4
13

.9
±0

.2
 (n

 =
31

)
34

0

2 R
ol

lin
g 

M
ou

nt
ai

n,
 

m
on

zo
ni

te
 (T

ig
)

16
37

.7
80

07
2

-1
07

.8
14

30
0

14
.6

±0
.2

 (n
 =

 2
3)

23
0

1 A
rc

hu
le

ta
 M

es
a 

#1
, 

gr
an

od
io

rit
e 

(T
is

)
17

a
37

.0
09

40
9

-1
07

.0
08

13
0

N
A

1
2

2 A
rc

hu
le

ta
 M

es
a 

#2
, 

gr
an

od
io

rit
e 

(T
i)

17
b

37
.0

09
40

9
-1

07
.0

08
13

0
15

.7
±0

.3
 (n

 =
 1

8)
1

1
20

9.
1

2 L
im

e 
C

re
ek

, 
gr

an
ite

 p
or

ph
yr

y 
(T

i)
18

37
.7

28
34

3
-1

07
.7

43
88

9
15

.6
±1

.4
 (n

 =
 2

9)
29

0

2 E
ng

in
ee

r M
tn

, 
gr

an
ite

 p
or

ph
yr

y 
(T

i)
19

37
.7

00
83

3
-1

07
.8

02
50

0
16

.0
±0

.7

2 F
la

tto
p 

M
ou

nt
ai

n,
 

m
on

zo
ni

te
 p

or
ph

yr
y 

(T
rl)

20
37

.7
51

93
5

-1
07

.9
75

47
6

16
.0

±1
.0

 (n
 =

 3
0)

2
30

6.
3

2 B
ar

lo
w

 C
re

ek
, 

gr
an

ite
 p

or
ph

yr
y 

(T
br

)
21

37
.7

19
44

4
-1

07
.9

18
60

6
16

.9
±0

.9
 (n

 =
 1

3)
13

0

1 D
is

ap
po

in
tm

en
t 

Va
lle

y,
 g

ra
no

di
or

ite
 

(T
g)

22
37

.9
49

43
6

-1
08

.6
53

42
5

16
.9

±4
.5

 (n
 =

 1
)

1
0

1 B
uc

kl
es

 L
ak

e,
 

ga
bb

ro
 (T

i)
23

37
.1

36
68

7
-1

06
.7

95
41

4
N

D
1

1
1

33
.3

O
lig

oc
en

e 
in

tru
si

ve
 ro

ck
s (

34
–2

3 
M

a)
3 R

ed
 M

ou
nt

ai
n,

 
m

on
zo

ni
te

 p
or

ph
yr

y 
(q

l)
24

37
.9

13
82

8
-1

07
.6

96
66

1
24

.0
3±

0.
1 

(n
 =

 
33

)
35

0

2 J
ac

ks
on

 M
ou

nt
ai

n 
#1

, m
on

zo
ni

te
  

po
rp

hy
ry

 (T
i)

25
37

.3
38

86
1

-1
06

.9
41

72
2

25
.1

±0
.4

 (n
 =

 2
4)

24
0

2 J
ac

ks
on

 M
tn

 #
2,

 m
on

zo
ni

te
 p

or
ph

yr
y 

(T
i)

26
37

.3
57

38
6

-1
06

.9
58

74
7

25
.1

±0
.4

 (n
 =

 2
4)

30
0

1 S
an

 M
ig

ue
l M

ts
, 

qu
ar

tz
 m

on
zo

ni
te

 
(T

pa
)

27
37

.8
48

30
6

-1
07

.9
94

94
4

25
.3

±0
.1

1 
 

(n
 =

 2
2)

35
0

1 S
an

 M
ig

ue
l M

ts
, 

gr
an

od
io

rit
e 

 
po

rp
hy

ry
 (T

rl)
28

37
.8

07
77

8
-1

08
.0

38
88

9
25

.5
±0

.2
9 

(n
 =

 5
)

1
2

7
1

3
5

55
.6

1 S
an

 M
ig

ue
l M

ts
, 

gr
an

od
io

rit
e 

 
po

rp
hy

ry
 (T

gd
)

29
37

.8
56

44
3

-1
07

.9
89

30
7

25
.3

±0
.1

4 
 

(n
 =

 2
2)

1
1

35
5.

5



Gonzales132
1 S

an
 M

ig
ue

l M
ts

, 
qu

ar
tz

 m
on

zo
ni

te
 

(T
ap

)
30

37
.8

49
16

5
-1

08
.0

29
43

8
25

.9
±0

.1
7 

 
(n

 =
 1

7)
1

1
17

10
.5

2 B
la

ck
 F

ac
e,

 
gr

an
od

io
rit

e 
 

po
rp

hy
ry

 (T
gd

p)
31

37
.8

34
44

4
-1

07
.8

92
50

0
26

.0
±0

.8
 (n

 =
 2

5)
4

1
25

16
.7

2 O
ph

ir 
#1

, 
gr

an
od

io
rit

e 
 

po
rp

hy
ry

 (T
gg

)
32

37
.8

48
63

9
-1

07
.8

78
91

7
26

.7
±1

.5
 (n

 =
 1

1)
2

4
11

35
.3

2 O
ph

ir 
#2

, 
di

or
ite

-g
ab

br
o 

(T
gg

)
33

37
.8

58
61

0
-1

07
.8

82
22

3
N

D
10

10
0

1 M
ea

rs
 B

as
in

, 
gr

an
io

di
or

ite
 (T

i)
34

38
. 0

18
61

10
7.

87
80

5
26

.7
±0

.2
 (n

 =
 1

7)
3

2
17

22
.7

2 S
an

 B
er

na
rd

o 
M

tn
, 

gr
an

od
io

rit
e 

(T
gd

p)
35

37
.8

53
11

1
-1

07
.8

94
16

7
26

.7
±0

.6
 (n

 =
 1

5)
10

7
15

53
.1

2 S
ul

ta
n 

M
ou

nt
ai

n,
 

gr
an

od
io

rit
e 

 
po

rp
hy

ry
 (T

im
)

36
37

.7
89

72
2

-1
07

.6
72

77
8

26
.6

±0
.6

 (n
 =

 2
8)

28
0

2 M
t. 

Sn
ef

fe
ls

, 
di

or
ite

-g
ra

no
di

or
ite

 
(T

i)
37

38
.0

00
36

6
-1

07
.7

92
97

2
27

.0
5±

0.
9 

 
(n

 =
 2

6)
26

0

1 S
ilv

er
 G

ul
ch

, 
br

ec
ci

a 
di

ke
 (c

l)
38

37
.9

81
29

4
-1

07
.6

58
32

5
27

.2
±3

.3
 (n

 =
 5

)
4

13
11

10
73

.7

1 H
en

de
rs

on
 G

ul
ch

, 
gr

an
ite

 p
or

ph
yr

y 
(r

h)
39

37
.9

88
91

-1
07

.7
71

37
27

.5
±0

.1
5 

 
(n

 =
 2

5)
25

0

1 G
ra

y 
H

ea
d,

 
gr

an
od

io
rit

e 
(T

gd
)

40
37

.9
90

76
-1

07
.9

73
19

27
.5

±0
.3

 (n
 =

 2
1)

2
6

1
1

22
25

.0

1 A
ba

jo
 M

ou
nt

ai
ns

, 
gr

an
od

io
rit

e 
 

po
rp

hy
ry

41
37

.8
95

94
10

9.
51

42
9

27
.9

±0
.2

 (n
 =

 3
0)

3
7

31
24

.4

1 S
ilv

er
 G

ul
ch

, 
di

or
ite

 d
ik

e 
(a

n)
42

37
.9

83
10

8
-1

07
.6

52
75

3
28

.0
±0

.3
1 

(n
 =

 4
)

1
8

1
2

2
2

5
55

.0

5 C
al

lio
pe

 D
ik

e,
 m

on
zo

ni
te

 (T
iq

, q
l)

43
38

.0
63

87
10

7.
65

51
4

30
.2

±0
.9

 (n
 =

 4
)

2
20

9.
0

1 S
ilv

er
 G

ul
ch

, 
C

u-
Fe

 b
re

cc
ia

 p
ip

e
44

37
.9

81
56

9
-1

07
.6

59
09

4
31

.8
±0

.4
 (n

 =
 1

)
1

2
6

3
5

2
2

1
85

.7

2 S
qu

ar
e 

To
p 

 
M

ou
nt

ai
n,

 d
io

rit
e 

po
rp

hy
ry

 (T
i)

45
37

.2
55

60
8

-1
06

.8
07

47
5

31
.9

±7
.8

 (n
 =

 1
)

2
1

67

1 L
itt

le
 C

on
e.

 
m

on
zo

ni
te

 p
or

ph
yr

y 
(T

gg
)

46
37

.8
90

43
10

8.
09

77
1

A
r/A

r a
ge

 ~
27

 M
a

8
2

3
2

66
.7



InherIted ZIrcons In Post–75 Ma Igneous rocks of the Western san Juan MountaIns 133
La

te
 C

re
ta

ce
ou

s t
o 

Pa
le

oc
en

e 
in

tru
si

ve
 ro

ck
s (

75
–6

0 
M

a)
2 O

ak
 C

re
ek

 C
an

yo
n,

 
di

or
ite

 p
or

ph
yr

y 
(g

p)
47

38
.0

21
86

9
-1

07
.6

90
69

1
64

.6
±1

.0
 (n

 =
 3

5)
1

35
2.

8

2 T
he

 B
lo

w
ou

t, 
di

or
ite

 p
or

ph
yr

y 
(g

p)
48

38
.0

38
69

3
-1

07
.6

71
05

7
65

.9
±1

.2
 (n

 =
 2

7)
1

5
27

18
.2

1 B
la

ck
 L

ak
e,

 
al

te
re

d 
m

on
zo

ni
te

 
(p

a)
49

38
.0

72
47

9
-1

07
.7

00
28

5
65

.8
±0

.5
 (n

 =
 8

)
2

3
8

0

2 C
oa

l B
an

k 
Pa

ss
, 

gr
an

ite
 p

or
ph

yr
y 

(T
i)

50
37

.6
88

88
9

-1
07

.7
87

22
2

67
.3

±2
.2

 (n
 =

 7
)

8
5

7
65

1 S
an

 M
ig

ue
l M

ts
,

 m
on

zo
ni

te
 p

or
ph

yr
y 

(T
la

)
51

37
.7

76
11

1
-1

08
.0

72
69

4
67

.6
5±

0.
37

  
(n

 =
 1

9)
1

19
5.

0

2 H
er

m
os

a 
Pe

ak
, 

di
or

ite
 p

or
ph

yr
y 

(T
hl

)
52

37
.7

13
32

3
-1

07
.9

25
01

9
68

.1
±0

.7
 (n

 =
 2

7)
2

1
10

0

4 S
co

tc
h 

C
re

ek
, 

di
or

ite
 p

or
ph

yr
y 

(T
hl

)
53

37
.6

52
59

 
-1

08
.0

40
23

 
68

.1
±0

.6
9 

 
(n

 =
 2

3)
1

3
1

23
23

4 E
xp

ec
ta

tio
n 

Pe
ak

, 
m

on
zo

ni
te

 p
or

ph
yr

y 
(T

m
)

54
37

.6
97

28
 

-1
08

.0
61

19
 

68
.6

±0
.7

4 
 

(n
 =

 2
2)

4
1

1
22

22

4 E
lli

ot
t P

ea
k,

 
di

or
ite

 p
or

ph
yr

y 
(T

hl
)

55
37

.7
31

58
 

-1
08

.0
59

97
 

68
.7

±0
.9

3 
 

(n
 =

 2
1)

5
6

1
20

21

2 L
a 

Pl
at

a 
M

ts
 (“

Th
e 

N
ot

ch
”)

, d
io

rit
e 

po
rp

hy
ry

56
37

.4
40

80
1

-1
08

.0
07

61
7

69
.6

±5
.8

 (n
 =

 1
)

35
5

1
97

.6

2 L
a 

Pl
at

a 
M

ts
  

(H
el

m
et

 P
ea

k)
,  

di
or

ite
 p

or
ph

yr
y

57
37

.4
11

29
3

-1
08

.1
35

27
1

N
D

24
10

0

2 M
cE

lm
o 

C
an

yo
n,

 
di

or
ite

 p
or

ph
yr

y 
(T

kd
)

58
37

.3
29

39
2

-1
08

.7
70

59
4

72
.9

±5
.4

 (n
 =

 1
)

13
4

2
1

95
.0

1 L
on

e 
C

on
e,

 
di

or
ite

 p
or

ph
yr

y 
(T

i)
59

37
.8

85
95

3
-1

08
.2

56
85

0
N

D
3

31
10

0

1 N
ew

 in
he

rit
ed

 z
irc

on
 a

ge
s r

ep
or

te
d 

in
 th

is
 p

ap
er

2 G
on

za
le

s (
20

15
)

3 G
on

za
le

s a
nd

 L
ar

so
n 

(2
01

7)
4 G

on
za

le
s (

20
17

)
5 G

on
za

le
s (

20
19

)
6 G

on
za

le
s e

t a
l. 

(2
02

1)
7 C

ry
st

al
liz

at
io

n 
ag

e 
no

t c
on

st
ra

in
ed

Zi
rc

on
 c

ry
st

al
s w

er
e 

ex
tra

ct
ed

 a
t t

he
 U

ni
ve

rs
ity

 o
f A

riz
on

a 
La

se
rC

hr
on

 C
en

te
r b

y 
tra

di
tio

na
l s

ep
ar

at
io

n 
m

et
ho

ds
. A

n 
in

-d
ep

th
 d

is
cu

ss
io

n 
of

 th
es

e 
m

et
ho

ds
 is

 a
va

ila
bl

e 
at

 th
e A

riz
on

a 
La

se
rC

hr
on

 C
en

te
r w

eb
pa

ge
.

https://sites.google.com/laserchron.org/arizonalaserchroncenter/home


Gonzales134
Oligocene (35–23 Ma) magmatic “flare up” (e.g., Lipman et 
al., 1973; Steven and Lipman, 1976; Lipman, 1989; Bove et al., 
2001; Lipman, 2007; Lipman and Bachmann, 2015; Gonzales 
and Lake, 2017; Gonzales et al., 2021). The calderas formed in 
the initial stages of incipient rifting in southwestern Colorado.

Numerous radial and concentric fractures on the margins 
of the San Juan-Silverton caldera complex (Fig. 1) provided 
avenues for emplacement of shallow intermediate to felsic plu-
tons, as well as hydrothermal fluids related to breccia pipes and 
veins (e.g., Gonzales and Larson, 2017; Gonzales, 2019). The 
plutons are linked to a larger batholith complex at depth that 
is revealed by geophysical data (Drenth et al., 2012). Breccia 
dikes formed by release of gas-charged eruptions associated 
with coeval plutons (e.g., Ransome, 1901; Irving, 1905; Kelly 
and Silver, 1946; Gonzales, 2019) are intimately affiliated with 
mineral deposits in some locations.

In the western San Juan Mountains, the alliance of mafic 
magmas with shallow felsic plutons continued to ~4 Ma (e.g., 
Naeser et al., 1980; Gonzales, 2015, 2017; Zhang and Audetat, 
2017). Several of the post-5 Ma plutons are associated with 
molybdenum mineralization near Rico (Cameron et al., 1986; 
Zhang and Audetat, 2017).

METHODS

Summary of Samples

Crystallization ages of post–80 Ma igneous rocks as well 
as the age populations and proportions of inherited zircons are 
presented in Table 1 and Appendix 1. These compilations in-
clude published data (Gonzales, 2015, 2017, 2019; Gonzales 
and Larson, 2017; Gonzales et al., 2021) and the author’s pre-
viously unpublished U-Pb zircon analyses. All of the plutonic 
and breccia dike samples, even those reported with 100% Pro-
terozoic zircon populations, were accurately mapped in previ-
ous studies as latest Mesozoic to Cenozoic. The data presented 
herein are representative of all major plutonic events, the San 
Juan Formation, and breccia pipes and dikes.

U-Pb Zircon Analyses

Zircon separates (Table 1) were obtained from 10–20 lbs 
of sample at the University of Arizona LaserChron Center by 
standard separation methods. Up to ~300 zircons were mount-
ed on a 1-in.-diameter epoxy puck with fragments or loose 
grains of Sri Lanka, FC-1, and R33 zircon standards. The 
surface of the epoxy mounts was sanded down to a depth of 
~20 μm, polished, imaged using a Gatan Chroma cathodolumi-
nescence (CL) detector coupled to a Hitachi S2400 scanning 
electron microscope, and cleaned in 1% HNO3 and 1% HCl 
prior to isotopic analyses. The CL images revealed zonation 
in crystals, potential inherited xenocrysts and antecrysts, and 
mineral inclusions.

U-Pb analyses of zircons were conducted by laser ablation 
inductively coupled plasma mass spectrometry (LA-ICPMS) 
at the Arizona LaserChron Center (e.g., Gehrels et al., 2006, 
2008; Gehrels and Pecha, 2014). Ablation was achieved with 

a Photon Machines Analyte G2 excimer laser equipped with a 
HelEx ablation cell using a spot diameter of 20 μm at selected 
points. Data were used to define weighted mean crystallization 
ages using Isoplot (Ludwig, 2008). Inheritance in zircons was 
assessed in each population by comparing the ages of cores and 
rims of crystals. 

More detailed descriptions of the methods used for previ-
ously published results are provided in Gonzales (2015, 2017, 
2019). In-depth descriptions of the methods are available at the 
Arizona LaserChron Center website (https://sites.google.com/
laserchron.org/arizonalaserchroncenter/home).

RESULTS

The age divisions for the zircon populations in Table 1 
mostly follow those of Walker et al. (2018). Exceptions are 
the 1850–1600 Ma and 1600–1390 Ma ranges that represent 
the dominant ages of Proterozoic to Mesoproterozoic basement 
rocks in southwestern Colorado (Gonzales and Van Schmus, 
2007). The <75 Ma division is used for the youngest popu-
lation, which includes all of the latest Mesozoic to Cenozoic 
igneous rocks (Gonzales, 2015, 2017).

The different total number of zircons analyzed for a given 
sample (Table 1) makes it challenging for direct comparison of 
inherited populations. The data do reveal (Figs. 3 and 4; Table 
1), however, that many 75–4 Ma plutonic and volcanic rocks 
contain >5% inherited Proterozoic zircons regardless of age or 
composition. The capture of Precambrian zircons via melting 
± crustal assimilation is also noted in Paleozoic to Cenozoic 
igneous rocks in other settings (e.g., Ducea et al., 2004; Miller 
et al., 2007; Smyth et al., 2007; Bryan et al., 2008; Stern et al., 
2010; Zhang et al., 2015; Zhang et al., 2016).

Inherited 2800–2500 Ma zircons are uncommon in the zir-
con populations that were analyzed. The 1850–1390 Ma zircon 
populations dominate in most samples with high proportions 
(24–95%) in the 32–30 Ma San Juan Formation and Cenozoic 
breccia dikes and pipes and the 75–26 Ma plutonic rocks (18–
100%) (Figs. 3 and 4; Table 1). In contrast, the proportions of 
inherited Proterozoic zircons in some ~25 Ma and most–23 Ma 
intrusive rocks are less than 10%. Inherited zircons with ages 
from 1390–541 Ma and 541–75 Ma were mostly found in brec-
cia dikes and pipes, and the San Juan Formation at Mears Ba-
sin. Twelve samples of plutonic rock also contain 1390–75 Ma 
inherited zircons with only two samples containing 6-7 total 
zircons of this heritage and the rest yielding less than 4 zircons.

DISCUSSION

Inherited Proterozoic zircons in latest Mesozoic to Ceno-
zoic igneous rocks in the western San Juan Mountains offer a 
glimpse into provenance of magmas. These data (Figs. 3 and 
4; Table 1; Appendix 1) along with geochemical and isotopic 
signatures of plutonic rocks reveal the involvement of 1850–
1390 Ma metamorphic and plutonic crust with a volcanic-arc 
heritage (e.g., Gonzales and Lake, 2017; Lang and Gonzales, 
2019) over the past 75 Ma regardless of magma composition 
or tectonic regime.

https://sites.google.com/laserchron.org/arizonalaserchroncenter/home
https://sites.google.com/laserchron.org/arizonalaserchroncenter/home
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Provenance of Inherited Zircons

San Juan Formation and breccia dikes-pipes

Volcanic breccias of the San Juan Formation and breccia 
dikes and pipes are distinguished by higher proportions and 
greater age range of inherited Proterozoic zircons (Fig. 3; Ta-
ble 1). Most of the zircons range from 1850 to 1390 Ma, akin 
to Proterozoic metamorphic and plutonic rocks exposed in the 
region (Fig. 1; Gonzales and Van Schmus, 2007; Karlstrom 
et al., 2017; Hillebrand et al., 2023). This vintage of zircons 
could be direct contributions from melting and assimilation of 
1800–1390 Ma basement or from recycled Paleozoic to Meso-
zoic strata containing detrital Proterozoic zircons (e.g., Malone 
et al., 2014; Nair et al., 2018; McGuire et al., 2019). The vol-
canic and magmatic-hydrothermal breccias often contain piec-
es of Proterozoic basement and Paleozoic to Cenozoic strata, 
indicating a high degree of interaction of gas-charged magmas 
with country rocks (e.g., Gonzales, 2019). Only the dacitic lava 
flow from Coxcomb Peak in the San Juan Formation contains 
<20% inherited zircons.

Inherited zircons with ages of >2500 Ma, 1390–541 Ma, 
and 541–75 Ma are most abundant in the breccia dikes and 
pipes and the San Juan Formation at Mears Basin (Fig. 3; Table 
1). The >2500 Ma and 1390–541 Ma zircons are not repre-
sentative of any exposed rocks in southwestern Colorado. Ar-
chean zircons might be xenocrysts from Proterozoic basement 
or detrital crystals from Paleozoic to Mesozoic sedimentary 
rocks (e.g., Gonzales, 2019). The 1390–541 Ma and 541–75 
Ma zircons likely (Gonzales, 2019) likely originated from in-
teraction of gas-charged magmas with Paleozoic to Mesozoic 
strata containing detrital zircons from various sources (e.g., 
Grenville basement rocks, Pikes Peak Batholith; Van Schmus 
and Bickford, 1993; Becker et al., 2005; Moecher and Samson, 
2006; Gleason et al., 2007; Evans and Soreghan, 2015; Guit-
reau et al., 2016; Alsalem et al., 2017). Alternatively, some of 
the 1390–1000 Ma zircons could represent discordant ages of 
Mesoproterozoic to Paleoproterozoic zircons that underwent 
Pb loss.

Laramide zircons (Table 1) in some breccia dikes were en-
trained from 75 to 60 Ma igneous rocks (Gonzales, 2019). The 
36–25 Ma zircons in the breccia dike at Stony Mountain were 
sourced from Oligocene intrusive and volcanic country rocks, 
predominantly from the ~27 Ma Stony Mountain stock (Gon-
zales, 2019).

Latest Cretaceous to Cenozoic plutonic rocks

The ages of inherited Proterozoic zircons in most (24 of 28) 
of the 75–60 Ma (18–100%) and 32–26 Ma intrusive rocks 
(9–86%) fall within the 1800–1390 Ma range (Figs. 1, 3 and 
4; Table 1; Appendix 1) of metamorphic and plutonic rocks in 
the Needle Mountains complex (Gonzales and Van Schmus, 
2007; Karlstrom et al., 2017; Hillebrand et al., 2023). The high 
proportions of Proterozoic xenoliths in some 75–26 Ma pluton-
ic rocks (i.e., La Plata Mountains and Rico Mountains) offer 
supporting evidence for partial melting of Proterozoic base-

ment rocks ± crustal contamination. The data cannot, however, 
resolve the relative proportions of 1850–1390 Ma zircons cap-
tured by direct melting versus assimilation. The minor amounts 
of post–1300 Ma zircons were likely from assimilation of Pa-
leozoic to Mesozoic strata (Fig. 4; Table 1), though evidence 
(e.g., xenoliths) for this interpretation is lacking. Inherited Lar-
amide zircons were also found in some post–32 Ma plutonic 
rocks (i.e., Calliope dike; Figs. 3 and 4; Table 1).

Most post–16 Ma plutonic rocks did not yield any inherited 
zircons of any age; the most notable exception is the ~9 Ma 
granite stock in Chicago Basin, which was emplaced within 
~1400 Ma granite (Fig. 1). Several 26–25 Ma samples also did 
not yield inherited zircons (Figs. 3 and 4; Table 1).

The Role of Proterozoic Lithosphere in Magma Genesis

Many researchers attribute the latest Mesozoic to Cenozoic 
magmatic record in the region to shallow subduction of the 
Farallon plate during the Laramide orogeny, followed by slab 
rollback during regional extension (e.g., Coney and Reynolds, 
1977; Humphreys, 1995; Humphreys et al., 2003; Chapin et al., 
2004; Chapin, 2012; Ricketts et al., 2016). In a review of latest 
Mesozoic to Cenozoic magmatic patterns across the western 
United States, Glazner (2022) stated, “Indeed, it is time to re-
new investigations into just how magmas are generated in arc 
settings and how arc-like magmas are generated in non-arc set-
tings, such as the magmatism that followed in the wake of the 
Mendocino triple junction” (p. 105). The magmatic record in 
the western San Juan Mountains involving Proterozoic rocks 
with typical arc geochemical and isotopic signatures shed light 
on this conversation, especially for post–23 Ma plutonic rocks 
that formed during regional extension.

FIGURE 4. Histogram of inherited zircons in 75–4 Ma plutonic rocks in the 
western San Juan Mountains. Note that the majority of zircons fall within the 
1800–1390 Ma ages of metamorphic and plutonic rock in the Needle Moun-
tains complex.
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Most of the 75–4 Ma intermediate to felsic plutonic rocks 

in southwestern Colorado share trace element and rare earth 
element signatures indicative of typical magmatic arcs such 
as enrichment in large-ion lithophile elements (e.g., Rb, Ba, 
Pb) and depletion in high-field-strength elements (e.g., Ta, Nb; 
Fig. 5; Wegert and Parker, 2011; Gonzales, 2015). Similar arc 
affinities are documented in 28–18 Ma and 10–4 Ma alkaline 
mafic rocks formed by melting of lithospheric mantle and low-
er crust (e.g., Gonzales et al., 2010; Gonzales and Lake, 2017; 
Lang and Gonzales, 2019; Lipman and Zimmerer, 2019; Mc-
Cormick and Gonzales, 2023).

Bulk-rock Sr and Nd isotopic data for 28–4 Ma alkaline 
mafic rocks (e.g., Gonzales et al., 2010; Gonzales and Lake, 
2017; Lipman and Zimmerer, 2019; McCormick and Gonza-
les, 2023), and 68–4 Ma intermediate to felsic rocks near Rico 

(e.g., Gonzales and Lake, 2017; Lang and Gonzales, 2019) 
lend evidence for partial melting of 1.8–1.3 Ga lithosphere 
(mantle or crust) during magma production.

The geochemical and isotopic signatures along with the zir-
con inheritance of 74–4 Ma plutonic rocks (Figs. 3 and 4; Ta-
ble 1) are evidence for the involvement of 1850–1390 Ma arc 
lithosphere in magma production. This affiliation is apparent 
over the entire 75 Ma magmatic record and regardless of rock 
composition (Fig. 2).

The geochemical signatures of 75–60 Ma plutons are con-
sistent with melting of a subducted slab during the Laramide, 
but zircon populations and isotopic data show that melting of 
Proterozoic arc basement was involved. The arc signatures of 
Laramide plutonic rocks could come from either source, but 
the isotopic data support a Proterozoic provenance.

Gonzales and Lake (2017) argued that from 30 to 4 Ma, as-
thenospheric melts underplated and invaded lithospheric man-
tle with Proterozoic heritage, generating alkaline mafic rocks. 
Ascent of these magmas into higher crustal levels was involved 
in the production of small-volume intermediate to felsic mag-
mas (Zhang and Audetat, 2017; Lang and Gonzales, 2019). 
The more “evolved” Proterozoic upper crustal source for the 
post–16 Ma magmas is supported by isotopic data (Nd, Sr, Hf) 
from ~4 Ma intrusive rocks in the Rico Mountains (Lang and 
Gonzales, 2019).

Changes in Zircon Inheritance

The data (Table 1; Appendix 1) support the hypothesis 
that inherited Proterozoic zircons in 74–4 Ma plutonic rocks 
mostly originated by partial melting ± wall-rock assimilation 
of 1800–1390 Ma basement rocks. There is no supporting ev-
idence that the reduction in inherited zircons in plutonic rocks 
starting ~26 Ma is related to distinct melt sources (e.g., Lang 
and Gonzales, 2019). The lower preservation of inheritance is 
more likely related to changes in the conditions of magmatism, 
but only limited data are available to evaluate this idea. The 
mechanisms involved are therefore uncertain, but possibilities 
are: (1) partial melting of a crustal source depleted in inherited 
zircons due to multiple episodes of prior melting, and (2) a 
shift in the thermal regime of melting that reset the isotopic 
systems in older zircons.

The post-23 Ma intrusive rocks with low zircon inheritance 
(Table 1) are porphyritic-aphanitic granite and monzonite (e.g., 
Gonzales, 2015) whose genesis involved melting of Proterozo-
ic upper crust (Lang and Gonzales, 2019). Repeated melting 
of a given source over time would cause depletion in certain 
constituents (e.g., Si, Sr, K, Rb, and Ba) which is not consistent 
with the geochemical signatures of these rocks.

Drenth et al. (2012) proposed that the San Juan-Silverton 
caldera complex is underlain by a subvolcanic Oligocene ba-
tholith complex whose western margins extend into the Ri-
co-Telluride area. Partial melting of this plutonic complex 
might be a potential source of felsic melts with lower inherited 
zircons, but evidence to support this premise is lacking.

The other possible hypothesis is that the thermal regime 
during magma production after 23 Ma was elevated and reset 

FIGURE 5. (A) MORB-normalized element abundances for intermediate 
to felsic post–25 Ma plutonic rocks from the western San Juan Mountains. 
These patterns are consistent with rocks formed in magmatic arc systems (e.g., 
Winter, 2010) despite forming after the Laramide; they are similar to patterns 
found in 28–4 Ma mafic rocks in the region (Gonzales and Lake, 2017). (B) 
Average MORB-normalized patterns for granitic rocks in magmatic arc sys-
tems from Winter (2010). Green lines are M type (n = 17), light blue lines are 
S type (n = 704), dark blue lines are I and M type (n = 250), and red lines are I 
type (n = 1074). Normalizing element concentrations are from Pearce (1983).
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the U-Pb systems in inherited zircons. This would require tem-
peratures in excess of 900°C (e.g., Lee et al., 1997; Cherniak 
and Watson, 2000; Hermann et al., 2021) to invoke solid-state 
diffusional Pb loss with a partial to complete reset. Melt tem-
peratures lower than 900°C would favor preservation of inher-
ited Proterozoic zircons. Many factors influence Pb diffusion 
in zircons (e.g., crystal size, radiation damage, alteration by 
fluids, rapid emplacement; Watson, 1996; Cherniak and Wat-
son, 2000; Miller et al., 2003; Bea et al., 2007; Miller et al., 
2003). Lee et al. (1997) concluded that ages of inherited zir-
cons can reset during partial melting, but the required tempera-
ture (~900°C) is higher than those for the production of most 
felsic magmas (i.e., <750–850°C).

Starting at ~28 Ma in the western San Juan Mountains, 
swarms of mafic dikes invaded the upper crust along zones of 
incipient extension (e.g., Gonzales, 2015; Gonzales and Lake, 
2017; McCormick and Gonzales, 2023). This elevated the 
thermal gradients in the lithosphere and produced small vol-
umes of felsic magmas from 23 to 4 Ma (e.g., Rico to Ouray; 
Fig. 1; Gonzales, 2015; Zhang and Audetat, 2017; Lang and 
Gonzales, 2019). Zhang and Audetat (2017) provided evidence 
that granitic rocks in the ~4 Ma Silver Creek pluton near Rico 
crystallized at 780–800°C and 2–5 kbars and that magma pro-
duction involved mafic melts. The temperature to generate the 
magma could realistically have exceeded 900°C. A shift in the 
thermal conditions of the lithosphere from the Laramide into 
the middle to late Cenozoic during regional extension is there-
fore a viable option for lower proportions of inherited zircons 
in rocks that formed after 23 Ma.

Xenoliths in Oligocene volcanic rocks on the Colorado Pla-
teau record metasomatism and recrystallization of lithospheric 
mantle ± slab during subduction of the Farallon plate from 80 
to 30 Ma (e.g., Broadhurst, 1986; Wendlandt et al., 1993, 1996; 
Smith 1979, 1995; Roden et al., 1990; Usui et al., 2002, 2003; 
Smith et al., 2004). Dehydration and release of fluids from the 
subducted slab “cooled” the lithosphere (e.g., Usui et al., 2002, 
2003; Smith et al., 2004), favoring melting at <800°C with 
greater preservation of inherited Proterozoic zircons in 75 to 
25 Ma plutonic rocks.

In deciphering the magmatic history of a region, it is criti-
cal to understand the melt provenance and its influence on the 
genesis and traits of different generations of rocks. Insight into 
the post–75 Ma records in the Southern Rocky Mountains must 
consider the contributions of Proterozoic lithosphere in magma 
production during shifting tectonic regimes.
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