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COMPARISON OF THE SEDIMENTOLOGIC AND 
STRATIGRAPHIC CHARACTERISTICS OF THE 

POINT LOOKOUT VS. GALLUP SANDSTONES NEAR 
CABEZON, NEW MEXICO

DANIEL J. KONING
New Mexico Bureau of Geology and Mineral Resources, 801 Leroy Place, Socorro, NM 87801; dan.koning@nmt.edu

AbstrAct—Using three stratigraphic sections, this paper compares the sedimentologic and stratigraphic characteristics of the Point Look-
out (early Campanian, 84–81 Ma) and Gallup (early Coniacian, 90–89.5 Ma) sandstone tongues near Cabezon, New Mexico. Each of 
these tongues represents a major regression event along the southwestern shoreline of the Western Interior Seaway, exhibiting progressive 
upward coarsening and shallowing trends. Two differences are noted. First, lenticular and channel-shaped, >20-cm-thick sandstone beds 
with basal scour features (e.g., toolmarks, gutter casts) are common in the lower Point Lookout Sandstone and its lower transition with 
the Mancos Shale, but they are very sparse in the Gallup Sandstone. In the Point Lookout Sandstone, the orientation of channel fills and 
toolmarks in these and overlying, tabular beds range from 340° to 020° (mostly north-northeast), which is orthogonal (and to a lesser extent, 
left-oblique) to the northwestern-trending coastline and likely reflects periodic storm-related, offshore-directed currents. Second, 5th-order 
parasequences are more obvious in the Point Lookout Sandstone, where laterally continuous mudstones (up to 3 m thick) transition upwards 
into sandstones, resulting in mudstone-sandstone couplets that indicate deepening (transgression) followed by shallowing (regression). 
These mudstone-sandstone couplets are absent in the Gallup Sandstone, and except for the transitional base and lower part of this unit, 
individual parasequences are more obscure. There is also a lack of upward coarsening in the middle to upper part of the Gallup Sandstone. 
Differences in shoreline morphology controlled by contrasting sea-level stages that relate to systems tracts, as modeled by sequence stra-
tigraphy, may explain the observed differences. The Point Lookout Sandstone has an aggradation-progradation accommodation (stacking) 
succession and previously was interpreted as deposited in a highstand systems tract. During transgressions, sand was captured by lagoons 
and estuaries that resulted in sand-starved, muddy deposition on the shoreface ramp. Organic detritus in marine shales and along sandstone 
bedding planes is consistent with nearby delta distributary channels, which likely facilitated storm-flood currents and related deposition. In 
contrast, the middle-upper Gallup at Guadalupe Ruin has a progradation-aggradation stacking succession; its middle-upper part is inferred 
to have aggraded in a late stage of a lowstand system tract with slowly rising sea level. A corresponding coastline with incised river valleys 
on the coastal plain, increased shore-parallel transport of sand, and a lack of lagoons and estuaries resulted in a high volume of sand input 
to the nearshore environment. The high sand flux may have inhibited development of thick, transgressive mudstones during high-frequency 
(5th-order) transgressive events. Relatively long distances to deltaic distributary channels, not necessarily related to low sea levels but per-
haps happenstance, may explain the paucity of paleochannel, gutter casts, and toolmark features in the Gallup Sandstone at Guadalupe Ruin.

New Mexico Geological Society Guidebook, 74th Fall Field Conference, 2024, p. 201–217, https://doi.org/10.56577/FFC-74.201

INTRODUCTION

Late Cretaceous Stratigraphy and Paleogeographic 
Setting

The Western Interior Seaway (WIS) covered the interior of 
North America during the Late Cretaceous, effectively con-
necting the Gulf of Mexico with the Arctic Ocean. Part of the 
western shoreline of the WIS extended across New Mexico, 
where it trended northwest-southeast and was characterized by 
barrier islands, strand plains (broad shorelines with well-de-
fined parallel sand ridges separated by shallow swales), deltas 
related to small- to medium-sized drainages (102 to 105 km2 per 
Van Cappelle et al., 2018, and Lin and Bhattacharya, 2020), 
tidal flats, and lagoons (Fig. 1; Shetiwy, 1978; Wright, 1986; 
Devine, 1991; Wright-Dunbar, 1992; Wright-Dunbar et al., 
1992; Katzman and Wright-Dunbar, 1992; Nummedal, 2004; 
Zeck, 1982). In New Mexico, the WIS reached its maximum 
extent during the late Cenomanian through earliest Turonian 
(96–93 Ma) and progressively shrank until it left the state at 
~70 Ma. Superimposed on this long-term, eastward retreat 
(107 yr) were shorter term sea-level oscillations resulting in 

3rd-order transgressive-regressive events. These events pro-
duced progradational sandstones exhibiting nearshore facies 
that intertongue with marine mudstones assigned to the Man-
cos Shale.

This study compares two of these nearshore sandstone 
tongues, the Point Lookout and Gallup Sandstones, in the mid-
dle Rio Puerco Valley near the ghost town of Cabezon, located 
3 km to the northeast of Cabezon Peak in northwestern New 
Mexico (Figs. 1–3). This area lies in the southeastern part of 
the Colorado Plateau, 70 km northwest of Albuquerque (Fig. 
1). There, as elsewhere on the Plateau, intervening nearshore 
sandstone tongues are each formally named and character-
istically terminate to the northeast (seaward) in the marine 
Mancos Shale and grade landward (southwest) into terrestri-
al deposits (Fig. 3). In the area around Cabezon, the exposed 
stratigraphic units of the WIS include, in ascending order and 
with approximate thicknesses: lower tongue of Mancos Shale, 
Gallup Sandstone (18 m); Mulatto Tongue of Mancos Shale 
(155 m), Dalton-Hosta sandstone tongue (12–15 m), Satan 
Tongue of Mancos Shale (95 m), and Point Lookout Sandstone 
(22 m). (The thickness of the Mulatto Tongue is from compar-
ing Google Earth elevations parallel to stratal strike, and other 

1) do not use this as a template 
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thicknesses are from this study and unpublished data from D.J. 
Koning). The Point Lookout Sandstone has back-barrier facies 
near its top (e.g., lagoon, estuary, and tidal channel facies) that 
grade upward into coal-bearing, terrestrial deposits of the Me-
nefee Formation (Wright and Hayden, 1988; Devine, 1991; 
Katzman and Wright-Dunbar, 1992). The youngest and final 
marine tongue in the Late Cretaceous succession, the Lewis 
Shale (not shown in Fig. 3), outcrops ~20 km north of the town 
of San Luis. Biostratigraphic data (i.e., ammonites and inoc-
eramids) indicate that the Gallup Sandstone near Cabezon is 
earliest Coniacian (Scaphites preventricos ammonite zone) and 
the Point Lookout Sandstone is early Campanian (above or in 
the Scaphites hippocrepis ammonite zone; Sealey and Lucas, 
2019; P. Sealey, written comm., 2024). Figure 4 compares the 
age control for the Point Lookout and Gallup Sandstones with 
global stratigraphic sequences and eustatic curves.

Sequence Stratigraphy

Elements of sequence stratigraphy relevant to this paper 
include parasequences and sequence tracts (van Wagoner et 
al., 1987, 1988; Posamentier et al., 1988; SEPM, 2024). Ste-
reotypical parasequences in siliciclastic sediment are repeated, 
upward-coarsening units bound by discrete flooding surfaces. 
A systems tract comprises a related system of depositional fa-
cies that may include back-barrier environments (tidal flats and 
lagoons), barrier islands, nearshore environments (foreshore, 
upper shoreface, proximal lower shoreface, and distal lower 
shoreface), and relatively deep-water, offshore environments. 
The three main systems tracts used in this paper include high-
stand, lowstand, and transgressive sequence tracts (HST, LST, 

and TST); these systems tracts, important related stratigraph-
ic surfaces, and their relationships with sea-level changes are 
summarized in Figure 5 and reviewed in SEPM (2024).

Stratigraphic Context of Gallup and Point Lookout 
Sandstones

Gallup Sandstone

Although several tongues of the Gallup Sandstone are noted 
near Gallup, its type area (Sears, 1925), only one tongue is seen 
in the middle Rio Puerco Valley. This ~18-m-thick tongue (as 
measured in this study) is correlative to the A tongue depicted 
in Nummedal and Molenaar (1995). The finding of Scaphities 
preventicos at the top of the Gallup Sandstone in the Cabezon 
area (Sealey and Lucas, 2019) indicates an early Coniacian age 
of 89.5–90.0 Ma, consistent with youngest Gallup deposition 
(Nummedal and Molenaar, 1995). The age of the A tongue cor-
responds to a globally recognized, sea-level lowering (~70 m) 
and corresponding progradation of nearshore sandstones (Fig. 
4).

The Gallup Sandstone represents the first major prograda-
tion in the Upper Cretaceous section of the San Juan Basin 
(Molenaar, 1983) and is inferred to be near a deltaic complex 
(Gardner, 1995; Nummedal and Molenaar, 1995; Lin and 
Bhattacharya, 2021). The Gallup Sandstone crops out near 
the Rio Puerco about 8 km south of Cabezon Peak (near the 
ghost town of Guadalupe; Fig. 2) and on the eastern side of 
Mesa Prieta (southeast of Fig. 2 map area), pinching out to the 
northeast before the main drainage of the Rio Salado. The Gal-
lup Sandstone tongue overlies the lower tongue of the Mancos 
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FIGURE 1. Paleogeography of the southwestern United States at about the time of deposition of the Gallup Sandstone (left panel) and Point Lookout Sandstone 
(right panel). The study area is shown by a red rectangle relative to state boundaries. The inset at top-center shows the study area (red rectangle) relative to cities, 
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Shale. The Gallup is locally overlain in a seaward direction 
by the marine Tocito Sandstone. The upper Gallup Sandstone 
grades landward into the nonmarine Dilco Coal Member of 
the Crevasse Canyon Formation (Fig. 3). The Gallup coastal 
margin has been interpreted as a low-gradient, basinal ramp 

margin setting with shallow water (<200 m water depth; Num-
medal, 1990). Previous works on lithofacies and depositional 
environments of the Gallup include Molenaar (1973, 1983), 
Campbell (1971, 1973, 1979), Tillman (1985), Nummedal 
and Swift (1987), and Nummedal (1990). Studies addressing 
sequence stratigraphic topics include Weimer (1984), Num-
medal (1990), Nummedal and Riley (1991), Nummedal and 
Molenaar (1995), and Nummedal (2004). Particularly import-
ant to this paper are the detailed stratigraphic investigations 
by Lin et al. (2019) and Lin and Bhattacharya (2020, 2021), 
who measured and described 71 closely spaced stratigraphic 
sections across an outcrop belt ~200 km west of Cabezon. For 
the Gallup Sandstone and interbedded marine mudstones, Lin 
et al. (2019) identified 16 depositional facies associations and 
subdivided the studied strata into 61 individual parasequences, 
comprising 26 parasequence sets and 12 sequences. 

Point Lookout Sandstone

The Point Lookout Sandstone represents a major northeast-
ward progradation of the shoreline in the early Campanian. Its 
nearshore sandstones are capped by back-barrier facies (e.g., 
lagoon, estuary, tidal channels) and are overlain by (and cor-
relate landward southwestward with) coastal swamp and plain 
deposits of the Cleary Coal Member of the Menefee Formation 
(Wright, 1986; Devine, 1991; Wright-Dunbar, 1992; Nummed-
al and Molenaar, 1995, fig. 1). A fossil of Scaphites hyppocri-
tus I has been found in the uppermost Satan Tongue below the 
Point Lookout, indicating that progradation of the Point Look-
out occurred no earlier than 84 Ma, probably in the Scaphites 
hyppocritus II and III ammonite zones that are 84–81 Ma (Fig. 
4; Sealey and Lucas, 2019). Interestingly, there is no notable 
drop in global sea levels at this time (Haq, 2014; Fig. 4). Sed-
imentologic-stratigraphic work on the Point Lookout Sand-
stone was pioneered in the Cabezon area by Wright (1986), 
who noted high-frequency transgression-regression intervals 
(5th-order parasequences) in nearshore environments. Her lat-
er studies noted that the top of a parasequence commonly fines 
upward, rather than having a sharp lithologic contact (Wright 
and Hayden, 1988; Wright-Dunbar, 1992). Investigations of a 
slightly more landward position of the Point Lookout (Devine, 
1990; Katzman and Wright-Dunbar, 1992) discovered that tid-
al flats and lagoon facies correlate laterally to transgressive 
events in the nearshore record, which was explained by rising 
sea levels drowning river valleys and tidal flats with minimal 
landward retreat (Devine, 1991; Katzman and Wright-Dunbar, 
1992). Regressive downlap in the ensuing sea-level drop re-
sulted in a relatively abrupt coarsening of strata above these 
transgressive deposits (Wright-Dunbar, 1992).

Purpose

In reconnaissance geologic investigations, I noted sed-
imentologic differences between the three aforementioned 
sandstone tongues in the Cabezon area, prompting this more 
detailed study. Using three stratigraphic sections (Fig. 2), this 
paper documents and compares the lithologic character of 
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two of these sandstone tongues, the Gallup and Point Look-
out Sandstone. For more information and discussion of the 
Dalton-Hosta Sandstone, refer to Optional Stop 2 of the Sec-
ond-Day Road Log (Koning et al., 2024). I present a working 
hypothesis that appeals to sea-level-controlled differences in 
shoreline morphometry and proximity to deltaic distributary 
channels to explain these sedimentologic differences.

OBSERVATIONS AND FACIES INTERPRETATIONS

Two stratigraphic sections were measured and described in 
locations coinciding with Stops 1 and 3 on the 2024 NMGS 
Fall Field Conference Second-Day Road Log (Fig. 2). The two 
stratigraphic sections were measured using an Abney level and 
hand-held GPS: Bosque Grande in the Point Lookout Sand-
stone (abbreviated as BG SS in Fig. 2) and Guadalupe Ruin 
in the Gallup Sandstone (abbreviated as GR SS in Fig. 2). De-

scribed features include bedding thickness and geometry, con-
tacts, and grain size. Ichnofossils were noted, and orientations 
of toolmarks were measured. Aside from local bivalve molds, 
no invertebrate fossils were found. Descriptive data for the 
stratigraphic sections are presented in Appendix 1. This study 
also refers to a previous stratigraphic section measured 0.4 km 
north of Stop 1B of the Second-Day Road Log (Wright and 
Hayden, 1988, abbreviated as PB SS on Fig. 2). Photographs 
presented below document stratigraphic architecture and lith-
ologic character. Depositional environments are assigned ac-
cording to the criteria listed in Table 1.

Gallup Sandstone (Guadalupe Ruin Stratigraphic Section)

Lithology

The Gallup Sandstone at Guadalupe Ruin is characterized 

Environment Lithology Sedimentary structures Other*

Tidal channel & 
related delta

Lower-fine to lower-coarse-grained, 
cross-bedded sandstones

Ripple cross-lamination, tabular bedding, 
herringbone cross-lamination.

Skolithos. Low to intense bioturbation. 
Fining upward intervals. Abundant wood 
and coal chips.

Lagoon 
Mudstone-dominated, with variable 
lower-very-fine to lower-fine-grained 
sandstones

Thinly bedded, or massive due to 
bioturbation. Common ripple cross-
lamination and horizontal-planar laminations.

Low to intense bioturbation

Barrier island Lower-fine to upper-medium-grained 
sandstone

>0.5-m-thick dune cross-stratification; local 
tabular sandstone and bioturbated sandstones Skolithos. Absent to intense bioturbation. 

Distributory channel Upper-fine to lower-coarse-grained 
sandstones

Trough to planar cross-bedded; locally tabular 
sandstones. Bar forms with limited extent.

Skolithos. Absent to sparse bioturbation. 
Paleocurrent orthogonal to shorelines.  
Mudstone drapes on SS. Abundant mud rip-
ups, wood chunks, and coaly chips.

Foreshore Fine- to medium-grained sandstone. 
Heavy mineral concentrations. Planar to sub-planar beds dipping seaward Absent to sparse biotrbation

Upper shoreface
Lower-fine- to lower-coarse-grained 
sandstone, mostly fine-upper to 
medium-grained. 

Cross-bedded (trough and planar foresets) 
and tabular-bedded. Bed thicknesses 0.5–3 m. 
Longshore trough deposits.

Skolithos. Absent to sparse bioturbation. 
Multidirectional paleoflow. Contact with 
lower shoreface is marked by abrupt grain-
size change or scour.

Proximal lower 
shoreface

Lower-very-fine to lower-fine-grained 
sandstones. Lacks mudstone beds, and 
sandstone beds tend to be amalgamated.

HCS, SCS, and planar to low-angle cross-
bedding; ripple cross-lamination. Laminated 
SS interbedded with bioturbated sandstone 
beds;  bed thickness up to 1 m. 

Skolithos. Absent to thorough bioturbation. 
Abundant gutter casts at base of beds.

Distal lower 
shoreface

Muddy to silty, lower- to upper-very-
fine-grained sandstones, thin tempestite 
sandstones

Intensely bioturbated and difficult-to-see red 
structures; only remnant ripple- to low-angle 
cross lamination, HCS, and SCS.

Moderate to thorough bioturbation. Plant 
and organic matter common.

Offshore transition
Silty to sandy mudstones and sandy 
siltstones; subordinate vf SS (often 
tempesites)

Centimeter-scale, thin bedded, planar 
bedding. Local HCS. Tempesites internally 
masive & have scoured bases. Bouma 
sequences common. 

Absent to thorough bioturbation. As a 
whole, coarsens upward. Abundant organic 
matter and shell fragments.

Offshore
Dark (organic-rich), clayey mudstones 
and shales; subordinate silty mudstones-
muddy siltstones

Centimeter-scale bedding that is internally 
massive, laminated, or normally graded.

Absent to thorough bioturbation. Abundant 
organic matter and shells.

Notes:
Criteria summarized from Lin et al. (2019) and Pemberton et al. (2012).
SS = sandstone; HCS = hummocky cross-stratification; SCS = swaly cross-stratification
* Ichnofossil criteria were not heavily employed in this study.

TABLE 1. Criteria for interpretation of depositional environments
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by a cliff-forming, 18-m-thick interval of amalgamated sand-
stone. This sandstone conformably overlies the Mancos Shale 
across a 4-m-thick transition zone. Noteworthy stratigraphic 
intervals are described below in ascending order. Annotated 
photographs of the measured outcrop are shown in Figures 6 
and 7, and the stratigraphic section is presented in Figure 8.

The Mancos Shale is assigned to the lower 9.9 m of the 
Guadalupe Ruin section and consists of interbedded mud-
stones, siltstone, and minor very fine sandstone (Figs. 6 and 
8). Strata are tabular and laminated to very thinly bedded. This 
interval contains 10–20% ledge-forming beds (up to 10 cm 
thick) composed of lower-very-fine to lower-fine sandstone. 
Sandstone beds have sharp bases and tops and commonly have 
clayey interlamina. The minor presence of sandstones and silty 
nature of the mudstones suggest a transitional offshore-lower 
shoreface environment. A distinctly hummocky cross-strati-
fied sandstone bed in the lower 0.4 m of the stratigraphic sec-
tion may denote the top of an underlying parasequence or a 
storm-related depositional event (Fig. 8; Lin and Bhattacha-
rya, 2021). Parasequence (P-1) is about 8 m thick, extending 
across the measured Mancos Shale interval, and capped by a 
10-cm-thick, relatively continuous bed of upper-very-fine to 
lower-fine sandstone (Fig. 8, unit 3b).

Between the Gallup Sandstone and Mancos Shale is a 
4-m-thick transitional zone (Figs. 6–8, units 3d–3e through 
4), characterized by interbedded, very fine- to fine-grained 
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System Tract

Sequence Boundary
Transgressive Surface
Maximum Flooding Surface

FIGURE 5. Schematic diagram illustrating systems tracts and surfaces related 
to sequence stratigraphy. From Wright (2013) and OpenGeology.org (https://
opengeology.org/historicalgeology/tools-of-historical-geology/stratigraph-
ic-tools-basic-sequence-stratigraphy/).
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FIGURE 6. Annotated outcrop corresponding to the lower-middle part of the Guadalupe Ruin stratigraphic section. View is to the west. Units correspond to those 
depicted in the stratigraphic section of Figure 8. The sharp, laterally extensive contact at the top of the sandstone bed capping Unit 6 (white arrows) may possibly 
correspond to a sequence boundary between parasequences P-2 and P-3 (Fig. 8) that correlates to the sequence boundary shown in Figure 14 between the lowstand 
and highstand system tracts.

http://OpenGeology.org
https://opengeology.org/historicalgeology/tools-of-historical-geology/stratigraphic-tools-basic-sequence-stratigraphy/
https://opengeology.org/historicalgeology/tools-of-historical-geology/stratigraphic-tools-basic-sequence-stratigraphy/
https://opengeology.org/historicalgeology/tools-of-historical-geology/stratigraphic-tools-basic-sequence-stratigraphy/
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sandstones and subordinate silty mudstones. The proportion of 
sandstone beds increases upsection, from 20–30% to 80–90%, 
and general bedding thickness also increases slightly upward. 
Notable burrowing is evident in units 3e and 4, with burrows 
appearing to localize diagenetic oxidation and cementation. 
Based on the dominance of sandstone and the high intensity of 
bioturbation, I assigned the transitional zone to the distal lower 
shoreface depositional environment (Table 1).

Above the basal transition zone, the Gallup Sandstone con-
sists of thin to thick, tabular beds of predominantly fine-grained 
sandstone (Fig. 8, units 5–10). The sand is tan to yellowish tan, 
subangular to subrounded, well sorted, and composed of quartz 
with 1–5% dark mafic grains and/or chert. Most beds lack sed-
imentary structures (are massive), and bulbous (knobby) out-
crop surfaces suggest former burrows, which are most obvious 
in the lower and upper meter (Figs. 7 and 8, base of unit 5 and 
unit 10). No mudstone interbeds are present.

In the Gallup Sandstone, a few noteworthy intervals are de-
fined by changes in bedding or grain size. The lower 1.3 m (Fig. 
8, lower-middle unit 5) has the finest sand (mostly lower-fine 
grain size) and consists of very thin to thin, heavily bioturbated 
sandstone (Figs. 7 and 8); the upper 0.6 m of unit 5 gradually 
coarsens upward into the overlying unit 6. Unit 6 (~2 m thick) 
exhibits locally distinct, horizontal-planar lamination occur-

ring within thin, tabular beds; grain size is mostly upper-fine 
(minor lower-medium). Overlying sandstones (units 7, 8, 10) 
are mostly thickly bedded and massive (bioturbated), and grain 
sizes range from lower-fine to lower-medium; however, a few 
meters below the top is a distinctive interval (unit 9), notable 
for its golden-yellow color, thin bedding, slightly finer sand, 
and high amount of bioturbation.

The most obvious parasequence in the Guadalupe Ruin 
stratigraphic section (Parasequence 2, or PG-2) spans the tran-
sitional base of the Gallup Sandstone. Parasequence 2 exhib-
its a 10-m-thick, coarsening-upward trend spanning units 3c 
through 6 (Fig. 8). In addition to sand coarsening upward (up-
per-very-fine and lower-fine near the bottom versus upper-fine 
and lower-medium near the top), bioturbation intensity de-
creases upsection. I interpret that Parasequence 2 represents 
an upward progression from mudstone-dominated, transitional 
offshore strata (unit 3c) to amalgamated sandstones shallower 
in the proximal lower shoreface (units 5, 6).

The overlying sandstone (Fig. 8, units 7–10) may possibly 
be divided into two cryptic parasequences called 3a and 3b (Fig. 
8), each about 5–8 m thick; note that 3a and 3b may actually 
constitute a single parasequence. The wholly sandstone nature 
of the middle-upper Gallup Sandstone (units 7–10), in addition 
to the high amount of bioturbation and only local horizontal 

Unit  4

Unit  3e

Unit  6

Unit  5

Gallup SS

FIGURE 7. Close-up photograph of the transitional base of the Gallup Sandstone. Note the tabular bedding and lack of deep paleochannels. Burrowing occurred in 
this transitional zone and at the base of the overlying unit 5 (inset photograph). Units correspond to those depicted in the stratigraphic section of Figure 8. The man 
is 1.95 m tall.
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to swaly laminations, suggest a relatively low-energy, lower 
shoreface environment with only minor upsection water-depth 
changes. It is probably near the middle of the lower shoreface, 
lacking both the muddy sandstones expected of the distal lower 
shoreface and the cross-stratification characterizing the proxi-
mal lower shoreface and upper shoreface (Table 1).

Point Lookout Sandstone (Bosque Grande Stratigraphic 
Section)

The main body of the Point Lookout is a ~22-m-thick, amal-
gamated, fine-grained sandstone that overlies a 3–4-m-thick, 
mudstone-dominated interval informally known as the “mark-
er shale” (T2, Figs. 9 and 10). Another mudstone interval 
(T3) lies about halfway up the main body. Both mudstones 
extend several kilometers and have been interpreted to reflect 
high-frequency (104–105 m.y.) transgressions (Wright, 1986; 
Wright-Dunbar, 1992; Wright and Hayden, 1988). Between 
the T2 and T3 units and above unit T3 lie sandstone-domi-
nated strata deposited during regressions, respectively called 
units R2 and R3 by Wright (1986), Wright-Dunbar (1992), and 
Wright and Hayden (1988). Below the T2 marker shale lie in-
terbedded sandstones and mudstones (R1 unit) that constitute 
an 8-m-thick transition zone above the Mancos Shale (Figs. 9 
and 10).

Below, I describe the sedimentologic characteristics of 
these units in ascending order, beginning with the upper Man-
cos Shale (Satan Tongue). The Bosque Grande stratigraph-
ic section covers the lower half of the Point Lookout Sand-
stone, extending 36 m to a stratigraphic position 6 m above the 
“marker shale” (Figs. 9 and 11, near top of R2). The previously 
published Point Balcon section extends 22 m above the “mark-
er shale” (Fig. 12; Wright and Hayden, 1988; Wright-Dunbar, 
1992).

The upper Mancos Shale (lower ~7 m of Fig. 11, units 
BG-01 through BG-02) consists of dark-gray to dark-gray-
ish-brown claystone, silty claystone, and subordinate beds of 
lower-very-fine to upper-fine sandstone and clayey-silty very 
fine sandstone. Strata are laminated to very thinly bedded and 
horizontal-planar to slightly wavy; bedding is well defined, 
typically with sharp bases and tops. A ~20-cm-thick sand-
stone bed seen 50 m west of the Bosque Grande stratigraphic 
section exhibits hummocky cross-stratification (Second-Day 
Road Log, fig. 2.26). Locally, lamina are disrupted or exhibit 
minor soft-sediment deformation. Sandstone beds lack sedi-
mentary structures, and burrows were not noted. Both clay-
ey sediment and sands are interpreted to have been deposited 
by settling from hypopycnal flows or from offshore-directed, 
storm-generated currents (including hyperpycnal flows). The 
general paucity of hummocky cross-stratification, no burrow 
trace fossils, and the predominance of mudstone compared to 
very fine sandstone indicate an offshore to offshore-transition 
depositional environment.

The Mancos-Point Lookout transition zone is character-
ized by interbedded mudstones, siltstones, and sandstones 
(Fig. 11, BG-03 through BG-13). Most strata are in laminated 
to very thin, tabular beds. About 10% of beds are 3–15-cm-
thick siltstones to very fine sandstones that have lenticular or 
channel-like geometric forms; these are massive to laminated 
(horizontal-planar to hummocky cross-stratified). The lower 
~8 m represents the upper part of a coarsening-upward parase-
quence (P-1a; Fig. 11, units BG-03 to BG-08), corresponding 
to a subdivision of the Wright-Dunbar R1 unit that I call R1a. 
A mudstone-dominated interval is found at 15.3–17.6 m (Fig. 
11, units BG-09 and T1b), which grades upward into an in-
terval comprising sandstones and siltstones interbedded with 
subordinate mudstones (Fig. 11, BG-10 to BG-13); this up-
ward coarsening corresponds to Parasequence 1b (R1b in the 
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FIGURE 9. Outcrop showing the Point Lookout Sandstone and its transition into the underlying Mancos Shale (Satan Tongue). The white line is the location of the 
Bosque Grande stratigraphic section (Fig. 11). Red lines and text note the transgressive-regressive lithologic units of Wright (1986) that correspond to mudstone-rich 
strata deposited during transgressions (T1, T2) and sandstone-rich strata deposited during regressions (R1, R2). T2 corresponds to the “marker shale” of Wright 
(1986) and Wright and Hayden (1988). Location corresponds to Stop 1A of the Second-Day Road Log of this field conference. Parasequences are annotated by white 
double-sided arrows and labeled P-1 and P-2.
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transgressive-regressive nomenclature of Wright-Dunbar). The 
strata in Parasequence 1b are in laminated to very thin beds, 
typically tabular beds; however, there are also notable thicker 
sandstone beds, up to 70 cm thick, that are lenticular or chan-
nel-shaped (Fig. 13, bottom panel). These thicker sandstones 
(lower-very-fine to lower-fine grain size) either lack sedimen-
tary structures (massive) or exhibit laminations that are hor-
izontal-planar or suggestive of gentle swaly to hummocky 
cross-laminations (HCS). Commonly, the uppermost part of 
the beds have the best-defined laminations and HCS. The len-
ticular and channel-shaped sandstones, having scoured basal 
contacts and sharp tops often capped by HCS, are interpreted 
as storm deposits according to criteria in Lin and Bhattacha-
rya (2021). Bioturbation, particularly burrows, are very minor 
compared to that seen above the T2 “marker shale.” Relative-
ly abundant organic debris, most commonly seen on bedding 
or lamination surfaces, is up to 2–3 mm long and suggests a 
nearby fluvial delta (Wright and Hayden, 1988). Proximity 
to deltaic distributary channels can also explain the relatively 
high number of storm beds and paleochannels (Lin and Bhat-
tacharya, 2021). The relatively high amount of organic debris, 
local ball-and-pillow(?) structures, and the interbedded mud-
stone-sandstone stratigraphic character is also consistent with 
deltaic-influenced deposition (i.e., similar to the prodelta facies 
of Lin and Bhattacharya, 2020).

The marker shale (Fig. 11, units BG-14 and BG-15, trans-
gressive unit T2) is composed of three subunits. The lower 2.5 
m (BG-14) consists of very thinly bedded clay, silty clay, and 
30% very fine sandstone-siltstone, the proportion of the latter 
decreasing slightly upsection. The middle 0.6 m consists of 
0.5- to 1-cm-thick (locally 2 cm) beds of grayish, silty mud-

stone; beds are locally finely laminated but also bioturbated 
(Wright and Hayden, 1988), although distinct burrows were 
not seen. The upper 0.3 m is browner and displays an upsec-
tion increase in the proportion (10–25%) of interbedded very 
fine sandstones and siltstones relative to mudstones (Fig. 11). 
Overall, ichnofossils are less abundant in the T2 marker shale 
compared to the overlying R2 unit. As noted by Wright-Dun-
bar (1992), the lower 2.5 m probably records deposition during 
a transgression, with the middle subunit recording maximum 
water depths. I interpret that the upper part of the T2 unit re-
flects a shallowing-upward trend at the base of the next parase-
quence, P-2 (Fig. 11).

Above the marker shale is the ~22-m-thick main body of the 
Point Lookout Sandstone, which contains two parasequences, 
P-2 and S-3 (Figs. 11 and 12). The sandstone in the lower-mid-
dle part of the main body (Fig. 11, units BG-16 to BG-19; 
Fig. 12, units PB-3a to PB-4) is massive or locally hummocky 
cross-stratified, horizontal-planar laminated, or low-angle 
cross-laminated; Skilothos and Thalassinoides burrows are 
present locally. The main body is inferred to have been depos-
ited in the distal to proximal lower shoreface (Figs. 11 and 12).

The abrupt contact between the marker mudstone and the 
base of the main Point Lookout body represents shoreface 
downlap of the sandstone-dominated, regressive R2 unit onto 
the mudstone-dominated, transgressive unit T2 (Wright-Dun-
bar, 1992). Bedding is thicker in the R2 unit compared to the R1 
unit, and these beds typically have scoured lower contacts with 
relatively abundant toolmarks and gutter casts (Fig. 11). Paleo-
channel fills are common at the base and in the lower 4 m of the 
R2 unit (Figs. 11 and 13). These paleochannels are up to 0.9 m 
deep and filled by lower-fine to upper-fine sandstones. Bidirec-
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storm beds
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Rockfall

Point Lookout Sandstone

20 meters

Mancos Shale

R1

T2
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P2
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FIGURE 10. Close-up photo of the western side of the outcrop face shown in Figure 9. Parasequences are annotated by white double-sided arrows and labeled P-1 
and P-2. Note the lenticular storm beds in the R1 lithologic unit and the paleochannel cutting into the T2 unit. Relatively deep paleochannels (gutter casts) are found 
in R1 and R2.
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FIGURE 12. The Point Balcon stratigraphic section of Wright and Hayden (1988), modified slightly from Wright-Dunbar (1992, fig. 1.13). Note the two categories 
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Comparison of the sedimentologiC and stratigraphiC CharaCteristiCs of the point lookout vs. gallup 213

tional paleoflow measurements of paleochannels, gutter casts, 
and groove casts range from 340° to 020° (with north-northeast 
trends being more common in the Bosque Grande stratigraphic 
section), agreeing with paleoflow data in Wright and Hayden 
(1988). The relatively thick parasequences, abundance of pa-
leochannels, gutter casts, and toolmarks, as well as the abrupt 
increase in sandstones at the R2/T2 contact imply a strong 
influence of a nearby storm-flood-dominated delta deposited 
during a highstand (Lin and Bhattacharya, 2021). A forced re-
gression at the base of R2 is possible but requires confirmation 
of a laterally extensive, sharp-based shoreface deposit. The 
relative abundance of ichnofossils, especially burrows, in R2 
compared to T2 and R1 (Fig. 11) implies shallower and more 
oxygenated water in R2, consistent with a shallower water 
depth compared to R1.

Descriptions of strata above R2 are from Wright and 

R2

T2

T2
R1

R1
pc

pc

~2 m

FIGURE 13. Top panel: Close-up of the upper T2 transgressive unit of Wright 
(1986), scoured into by an overlying paleochannel (pc), the latter called gutter 
casts by Lin and Bhattacharya (2021), with rock hammer for scale. The contact 
between T2 and R2 is abrupt and possibly represents a forced regression. In 
T2, the finest-grained strata are below the white line; above there are higher 
proportions (~20%) of siltstones and very fine sandstones. The base of the 
P-2 parasequence is at this white line. Lower panel: Photograph of the R1 
unit, with a notable paleochannel (gutter cast) about 3 m below the T2 marker  
shale.

Hayden (1988) and Wright-Dunbar (1992). A 0.5-m-thick 
mudstone-rich unit splits the main sandstone body into two 
parts and consists of gray, silty, carbonaceous shale with sand-
stone rip-ups, leaf imprints, and HCS (Fig. 12, unit PB-5). This 
mudstone-rich unit appears to fine-upward and is interpreted 
to represent deposition during a transgression. The boundary 
between Parasequences 2 and 3 is placed at the middle of the 
mudstone-rich unit, above a ~1-m-thick sandstone with HCS 
(Fig. 12). At the top of Parasequence 3 (Fig. 12, unit PB-7), 
there is fine- to medium-grained sandstone exhibiting inclined, 
planar laminated sets, interpreted as a foreshore environment 
(Fig. 12; Wright-Dunbar, 1992; Dunbar and Hayden, 1988).

The uppermost 4–5 m of the Point Balcon stratigraphic 
section consists of muddy sandstones and mudstones (Fig. 12, 
unit PB-8) capped by trough cross-stratified sandstone channel 
fills (Fig 12, unit PB- 9). Unit PB-8 is 1 m thick and highly 
variable in a lateral sense, ranging from gray shale to sand-
stone beds with oscillation ripples to channeled, carbonaceous 
sandstones; locally there is HCS. The foresets in the uppermost 
channel fill (unit PB-9) are bidirectional, and Ophiomorpha 
and Skolithos trace fossils are relatively common; this chan-
nel fill is interpreted as belonging to a tidal channel (Wright 
and Hayden, 1988). Units 8 and 9 are in the same stratigraphic 
position as organic mudstones of the Menefee Formation to 
the west-southwest and were interpreted as a lagoon or tidal 
flat environment (Wright and Hayden, 1988). Unit PB-8 can 
alternatively be interpreted as a low-energy, longshore trough 
on the upper shoreface or lower shoreface, in which case unit 
PB-9a may represent the longshore bar (Wright and Hayden, 
1988).

DISCUSSION

The Point Lookout and Gallup sandstones both were depos-
ited during long-term regression of the southwestern shoreline 
of the WIS, as indicated by the overall shallowing of nearshore 
facies and the progressive upsection increase in the proportion 
of sandstone to mudstone. Based on hand lens inspection, the 
sandstones are relatively similar in composition and texture.

There are marked differences between the two units. One 
difference is that in the Point Lookout Sandstone, vertical 
aggradation characterized the early deposition (resulting in 
~15-m-thick Parasequences 1a and 1b), followed by notable 
progradation (upward-shallowing) events associated with 
Parasequences 2 and 3. Above the marker shale in the Point 
Lookout Sandstone, there appear to be major swings of appar-
ent water depths and depositional environments, as evidenced 
by the mudstone-sandstone couplets (T2-R2, T3-R3), but this 
interpretation is complicated by what is likely to be episodic 
high fluxes of sediment during deltaic flood events (Lin and 
Bhattacharya, 2021). The 8–9 m thickness of Parasequences 
2 and 3, approximately coinciding with the T2-R2 and T3-R3 
couplets, are notably thinner than lower in the section. There-
fore, deposition and accommodation of the Point Lookout is 
characterized by aggradation followed by progradation, con-
sistent with previous interpretations of it being associated with 
a highstand systems tract (Wright and Hayden, 1988).
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at Guadalupe Ruin. The most dramatic shift in water depth at 
the Guadalupe Ruin section occurred in Parasequence 2 (Fig. 
8, units 3c–6), which is 10 m thick (note that this is not the 
same Parasequence 2 as discussed in the Point Lookout Sand-
stone). Deciphering parasequences in the overlying 13 m of 
the unit is uncertain, and water depth there seems to be rela-
tively constant based on the similarity of lithofacies (Fig. 8). 
So deposition and accommodation of the Gallup Sandstone are 
characterized by progradation (Parasequence 2) followed by 
aggradation (Parasequence 3).

Correlating the Guadalupe Ruin site with the distalmost 
Gallup Sandstone studied by Lin et al. (2019) suggests an ap-
proximate match of the thicknesses of the lower three parase-
quences (Fig. 14). Such a comparison is problematic, however, 
due to the 200 km of distance between the two sites, so only 
tentative inferences can be made. Parasequence 4 seems to be 
above their Gallup Sandstone, and I did not observe the Toci-
to Sandstone in my stratigraphic section, possibly because the 
Gallup Sandstone is thicker at Guadalupe Ruin and its strati-
graphic section did not extend far enough upward to capture 
the Tocito (cf. Nummedal and Molenaar, 1995, fig. 6). The 
most important inference made by this comparison is that Lin 
et al. (2019) interpreted the interval that appears to correlate to 

the lower two parasequences at Guadalupe Ruin to be deposit-
ed during the progradation of a highstand systems tract (Lin’s 
parasequences 4a through 4e) and the overlying strata to be as-
sociated with aggradation during an inferred lowstand systems 
tract (Lin’s parasequences 3a and 3b).

Another contrast between the Point Lookout and Gallup 
Sandstone tongues is the abundance of storm-related, lenticu-
lar to channel-shaped beds in the lower part of the Point Look-
out Sandstone, especially in the ~4 m above and below the 
T2 marker shale. It is interpreted that strong storm-related cur-
rents, probably in conjunction with high sediment and water 
discharges from a nearby delta distributary channel, generated 
these types of beds (Wright and Hayden, 1988; Wright-Dun-
bar, 1992) and were also likely responsible for gutter casts and 
grooves seen at the bases of both channelized and tabular sand-
stone beds.

This study only focused on two specific areas. Much more 
detailed stratigraphic study is needed to answer these ques-
tions, but I hypothesize these differences may relate to two 
factors: (1) coastline morphologies changing with varying 
sea-level stages, as conceptually modeled by sequence stratig-
raphy, and (2) proximity to a deltaic distributary channel for 
the two time periods associated with the Point Lookout and 
upper Gallup Sandstones. Detailed study of the Point Look-
out Sandstone has indicated it was deposited during a gener-
al highstand systems tract (Wright and Hayden, 1988). This 
inference is corroborated by progressively rising global sea 
levels during 84–81 Ma, with short-term sea-level drops being 
less than in the Coniacian (Fig. 4; Haq, 2014). High-frequen-
cy transgressions during this time resulted in the formation of 
lagoons, tidal flats, and associated tidal channels in addition to 
the drowning of river valleys and the drowning forming estuar-
ies (Wright, 1986; Devine, 1991; Katzman and Wright-Dunbar, 
1992). These and relatively stable barrier island-lagoon com-
plexes that characterize a transgression resulted in trapping of 
fluvially inputted sand (Wright, 1986; Devine, 1991), facilitat-
ing mudstone deposition on the former shoreface and resulting 
in the laterally continuous mudstone tongues T1, T2, and T3 
(Wright, 1986). Large estuaries and/or lagoons perhaps allows 
relatively higher short-term surging/discharging outflow from 
back-barrier features following storm events, facilitating pa-
leochannel (gutter cast) development along with toolmarks be-
fore and after maximum sea level (apparently the water depth 
was too deep during the peak of the transgression to have these 
strong-current features). Development of paleochannels (with 
HCS in their upper fills), gutter casts, and toolmarks may also 
be promoted due to proximity to deltaic distributary channels 
that experienced storm-related surges in discharge (Lin and 
Bhattacharya, 2021). Such proximity is inferred from the pres-
ence of deltaic (i.e., prodelta) features in the lower part and 
transitional base of the Point Lookout in the Bosque Grande 
section (R1 and R2), such as organic detritus, possible ball-
and-pillow features, and interbedded sandstones and mudstone 
(cf. Lin and Bhattacharya, 2020).

Aspects of coastline morphology, influenced by sea-level 
changes, and happenstance distance to major deltaic distrib-
utary channels may explain the stratigraphic character of the 

Sequence boundary
Flooding surface (parasequence boundary); number in bold refers to 
parasequence in Lin (et al. (2019); L1, L2a, L2b are for lower sequence..

Upper benonite bed, dividing the Gallup SS into two sequences
Transgressive or ravinement surface

Stratigraphic section of Lin et al. (2019)

Preliminary correlation of Guadalupe 
Ruin parasequences (see Fig. 8)

Note: Color shadings are interpreted depositional 
environments (Fig. 10 explanation)

HST: Highstand systems tract LST: Lowstand systems tract
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FIGURE 14. Most distal Gallup Sandstone tongue stratigraphy, interpreted by 
Lin et al. (2019) for outcrops 200 km northwest of the study area. The scaled 
green column shows a possible correlation of the parasequences inferred for 
the Guadalupe Ruin stratigraphic section. Such a long distance makes correla-
tions tentative, but it is intriguing that boundaries between the lower three para-
sequences in the Guadalupe stratigraphic section approximately match Lin’s 
parasequences and their bounding flooding surfaces. This comparison suggests 
that Parasequences 1 and 2 in Guadalupe Ruin are associated with a highstand 
systems tract, whereas the overlying sandstones are associated with an inferred 
lowstand systems tract, which is supported by the progradation-aggradation 
accommodation trend seen at Guadalupe Ruin. Note that the Tocito Sandstone 
was not observed in the Guadalupe Ruin stratigraphic section.
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Gallup Sandstone observed at Guadalupe Ruin. If Parase-
quences 3a and 3b of the Gallup Sandstone were deposited in 
a lowstand systems tract, as inferred for the upper, basinward 
end of the Gallup 200 km to the northwest (Fig. 14; Lin et al., 
2019), and consistent with a progradation-aggradation stacking 
pattern observed here, one would expect incised valleys and 
minimal development of lagoons and tidal flats. Such a sce-
nario would facilitate sediment bypass of the coastal margin 
and promote the aggradation of the middle-upper Gallup Sand-
stone (Parasequences 3a and 3b). Aggradation rates might have 
been sufficiently high that the middle-upper Gallup Sandstone 
is actually a single parasequence and a high-frequency trans-
gression is not recorded in this stratigraphic interval at Guada-
lupe Ruin. Or perhaps a quasi-static coastline associated with a 
lowstand system tract, “pinned” by clinoforms associated with 
the underlying sequence, retarded lateral shifts of depositional 
facies, inhibiting aggradation of thick mudstone tongues in the 
middle-upper Gallup Sandstone. The lack of deep paleochan-
nels, lenticular beds, and strong-current features in the Gal-
lup might relate to: (1) long distances from deltaic distribu-
tary channels or (2) lack of back-barrier stormwater storage 
(in estuaries or lagoons) and corresponding lack of post-storm 
outflow. The first factor is likely due to happenstance, but the 
second would be a result of a sea-level lowstand. One cannot 
negate the possibility of differences in paleoclimate, with low-
er frequency or intensity of storms in the early Coniacian ver-
sus the early Campanian, but much more data would be needed 
to support such a hypothesis.

CONCLUSION

This study compares the Gallup and Point Lookout Sand-
stones in the Cabezon area, located 70 km northwest of Al-
buquerque in the middle Rio Puerco Valley. Both represent 
regression of the WIS shoreline during two different times 
in the Late Cretaceous (early Coniacian versus early Cam-
panian), and the thickness of the main sandstone bodies are 
approximately similar (18–22 m). However, the Gallup and 
Point Lookout Sandstones have two intriguing differences. 
First, storm-related channel-fill sandstones and lenticular beds, 
having highly scoured bases with gutter casts and toolmarks 
(oriented 340° to 020°, with north-northeast trends being more 
common), are much more abundant in the Point Lookout Sand-
stone than the Gallup Sandstone, especially in the lower part 
of the Point Lookout (R1 and R2 units). Second, parasequenc-
es are more obvious in the Point Lookout Sandstone, where 
laterally continuous mudstones (several km long and up to 3 
m thick) transition upward into sandstones, resulting in mud-
stone-sandstone couplets that record high-frequency (5th-or-
der) deepening (transgression) events followed by shallowing 
(regressions). Except for its lower part, the Gallup Sandstone 
at Guadalupe Ruin lacks obvious parasequences and related 
mudstone-sandstone couplets. Much of these differences can 
be explained by differences in shoreline morphology due to 
contrasting sea-level states of the Point Lookout and Gallup 
Sandstones, as conceptually modeled by sequence stratigraphy. 
The Point Lookout Sandstone was mainly deposited during a 

sea-level highstand (Wright, 1986; Wright and Hayden, 1988), 
consistent with its aggradation-progradation accommodation 
(stacking) character. Deposition of transgressive mudstone 
lower in a parasequence was facilitated by the trapping of sand 
in estuaries and lagoons, the widespread occurrence of which 
would be expected in a highstand and the presence of which 
has been previously interpreted in the local stratigraphic re-
cord (e.g., Devin, 1991; Katzman and Wright-Dunbar, 1992). 
Storm-related discharges of water and sediment from nearby 
deltaic distributary channels promoted paleochannels, gutter 
casts, and toolmarks. The studied Gallup Sandstone (A tongue 
of Nummedal and Molenaar, 1995) appears to have a progra-
dation-aggradation accommodation character, consistent with 
deposition in a highstand (lower part of unit) followed by a 
deposition in a lowstand (middle-upper part of unit), as previ-
ously inferred by Lin et al. (2019) for the most basinward ex-
tent of the upper Gallup Sandstone 200 km to the northwest. A 
postulated lowstand inferred for the middle-upper Gallup (for 
this studied part of the A tongue) would theoretically lack es-
tuary and lagoon back-barrier features (Lin and Bhattacharya, 
2020) and promote channeled fluvial systems on the coastal 
margin; this could increase shoreline sand aggradation rates 
and reduce sand storage during 5th-order transgressions, both 
of which might inhibit mudstone deposition and obscure rec-
ognitions of parasequences in the middle-upper Gallup Sand-
stone. The shoreface lithofacies associations and lack of del-
taic features in the Gallup at the Guadalupe section indicate a 
happenstance far distance from deltaic channels. This distance 
and lack of back-barrier storage would reduce the likelihood of 
forming storm-related features such as paleochannels, gutter 
casts, and toolmarks.
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